Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Oncogene ; 43(13): 921-930, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336988

RESUMEN

Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.


Asunto(s)
Indazoles , Neurilemoma , Neurofibromatosis , Neurofibromatosis 2 , Neoplasias Cutáneas , Sulfonamidas , Humanos , Animales , Ratones , Neurofibromatosis 2/tratamiento farmacológico , Neurofibromatosis 2/genética , Neurofibromatosis 2/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosfatidilinositol 3-Quinasas , Quinasas p21 Activadas/genética , Fosfatidilinositol 3-Quinasa/uso terapéutico , Neurilemoma/tratamiento farmacológico , Neurilemoma/genética
2.
Res Sq ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37886501

RESUMEN

Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.

3.
Mol Cancer Ther ; 22(11): 1280-1289, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527526

RESUMEN

Neurofibromatosis Type 2 (NF2) is a tumor predisposition syndrome caused by germline inactivating mutations in the NF2 gene encoding the merlin tumor suppressor. Patients develop multiple benign tumor types in the nervous system including bilateral vestibular schwannomas (VS). Standard treatments include surgery and radiation therapy, which may lead to loss of hearing, impaired facial nerve function, and other complications. Kinase inhibitor monotherapies have been evaluated clinically for NF2 patients with limited success, and more effective nonsurgical therapies are urgently needed. Schwannoma model cells treated with PI3K inhibitors upregulate activity of the focal adhesion kinase (FAK) family as a compensatory survival pathway. We screened combinations of 13 clinically relevant PI3K and FAK inhibitors using human isogenic normal and merlin-deficient Schwann cell lines. The most efficacious combination was PI3K/mTOR inhibitor omipalisib with SRC/FAK inhibitor dasatinib. Sub-GI50 doses of the single drugs blocked phosphorylation of their major target proteins. The combination was superior to either single agent in promoting a G1 cell-cycle arrest and produced a 44% decrease in tumor growth over a 2-week period in a pilot orthotopic allograft model. Evaluation of single and combination drugs in six human primary VS cell models revealed the combination was superior to the monotherapies in 3 of 6 VS samples, highlighting inter-tumor variability between patients consistent with observations from clinical trials with other molecular targeted agents. Dasatinib alone performed as well as the combination in the remaining three samples. Preclinically validated combination therapies hold promise for NF2 patients and warrants further study in clinical trials.


Asunto(s)
Antineoplásicos , Neurilemoma , Neurofibromatosis 2 , Humanos , Neurofibromatosis 2/tratamiento farmacológico , Neurofibromatosis 2/genética , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Dasatinib/farmacología , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasa/uso terapéutico , Neurilemoma/tratamiento farmacológico , Neurilemoma/genética , Antineoplásicos/farmacología , Proliferación Celular
4.
Front Endocrinol (Lausanne) ; 14: 1219293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576973

RESUMEN

Introduction: There are no validated clinical or laboratory biomarkers to identify and differentiate endotypes of type 1 diabetes (T1D) or the risk of progression to chronic complications. Extracellular vesicles (EVs) have been studied as biomarkers in several different disease states but have not been well studied in T1D. Methods: As the initial step towards circulating biomarker identification in T1D, this pilot study aimed to provide an initial characterization of the proteomic and phosphoproteomic landscape of circulating EV-enriched preparations in participants with established T1D (N=10) and healthy normal volunteers (Controls) (N=7) (NCT03379792) carefully matched by age, race/ethnicity, sex, and BMI. EV-enriched preparations were obtained using EVtrap® technology. Proteins were identified and quantified by LC-MS analysis. Differential abundance and coexpression network (WGCNA), and pathway enrichment analyses were implemented. Results: The detected proteins and phosphoproteins were enriched (75%) in exosomal proteins cataloged in the ExoCarta database. A total of 181 proteins and 8 phosphoproteins were differentially abundant in participants with T1D compared to controls, including some well-known EVproteins (i.e., CD63, RAB14, BSG, LAMP2, and EZR). Enrichment analyses of differentially abundant proteins and phosphoproteins of EV-enriched preparations identified associations with neutrophil, platelet, and immune response functions, as well as prion protein aggregation. Downregulated proteins were involved in MHC class II signaling and the regulation of monocyte differentiation. Potential key roles in T1D for C1q, plasminogen, IL6ST, CD40, HLA-DQB1, HLA-DRB1, CD74, NUCB1, and SAP, are highlighted. Remarkably, WGCNA uncovered two protein modules significantly associated with pancreas size, which may be implicated in the pathogenesis of T1D. Similarly, these modules showed significant enrichment for membrane compartments, processes associated with inflammation and the immune response, and regulation of viral processes, among others. Discussion: This study demonstrates the potential of proteomic and phosphoproteomic signatures of EV-enriched preparations to provide insight into the pathobiology of T1D. The WGCNA analysis could be a powerful tool to discriminate signatures associated with different pathobiological components of the disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Vesículas Extracelulares , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Proteoma/metabolismo , Proteómica , Proyectos Piloto , Biomarcadores/metabolismo , Fosfoproteínas/metabolismo , Vesículas Extracelulares/metabolismo
5.
Front Endocrinol (Lausanne) ; 13: 955593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120427

RESUMEN

Pioglitazone, a PPARγ agonist, is used to treat type 2 diabetes (T2D). PPARγ is highly expressed in adipose tissue (AT), however the effects of pioglitazone to improve insulin sensitivity are also evident in other tissues and PPARγ agonism has been shown to alter cancer derived extracellular vesicle (EV)-miRNAs. We hypothesized that pioglitazone modifies the cargo of circulating AT-derived EVs to alter interorgan crosstalk in people with diabetes. We tested our hypothesis in a 3-month trial in which 24 subjects with T2D were randomized to treatment with either pioglitazone 45 mg/day or placebo (NCT00656864). Levels of 42 adipocyte-derived EV-miRNAs were measured in plasma EVs using low density TaqMan arrays. Levels of differentially expressed EV-miRNAs and their most relevant target genes were also measure in adipose tissue from the same participants, using individual TaqMan assays. Levels of 5 miRNAs (i.e., miR-7-5p, miR-20a-5p, miR-92a-3p, miR-195-5p, and miR-374b-5p) were significantly downregulated in EVs in response to pioglitazone treatment relative to placebo. The opposite occurred for miR-195-5p in subcutaneous AT. Changes in miRNA expression in EVs and AT correlated with changes in suppression of lipolysis and improved insulin sensitivity, among others. DICER was downregulated and exosomal miRNA sorting-related genes YBX1 and hnRNPA2B1 displayed a downregulation trend in AT. Furthermore, analysis of EV-miRNA targeted genes identified a network of transcripts that changed in a coordinated manner in AT. Collectively, our results suggest that some beneficial pharmacologic effects of pioglitazone are mediated by adipose-specific miRNA regulation and exosomal/EV trafficking. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT00656864.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Resistencia a la Insulina , MicroARNs , Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Humanos , MicroARNs/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Pioglitazona/metabolismo
6.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628588

RESUMEN

The purpose of this study was to define the proteomic and phosphoproteomic landscape of circulating extracellular vesicles (EVs) in people with normal glucose tolerance (NGT), prediabetes (PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects (n = 10 per group, ORIGINS study, NCT02226640) were used. EVs were isolated using EVtrap®. Mass spectrometry-based methods were used to detect the global EV proteome and phosphoproteome. Differentially expressed features, correlation, enriched pathways, and enriched tissue-specific protein sets were identified using custom R scripts. Phosphosite-centric analyses were conducted using directPA and PhosR software packages. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were identified among all samples. Unsupervised clustering of the differentially expressed (fold change ≥ 2, p < 0.05, FDR < 0.05) proteins and, particularly, phosphoproteins showed excellent discrimination among the three groups. CDK1 and PKCδ appear to drive key upstream phosphorylation events that define the phosphoproteomic signatures of PDM and T2DM. Circulating EVs from people with diabetes carry increased levels of specific phosphorylated kinases (i.e., AKT1, GSK3B, LYN, MAP2K2, MYLK, and PRKCD) and could potentially distribute activated kinases systemically. Among characteristic changes in the PDM and T2DM EVs, "integrin switching" appeared to be a central feature. Proteins involved in oxidative phosphorylation (OXPHOS), known to be reduced in various tissues in diabetes, were significantly increased in EVs from PDM and T2DM, which suggests that an abnormally elevated EV-mediated secretion of OXPHOS components may underlie the development of diabetes. A highly enriched signature of liver-specific markers among the downregulated EV proteins and phosphoproteins in both PDM and T2DM groups was also detected. This suggests that an alteration in liver EV composition and/or secretion may occur early in prediabetes. This study identified EV proteomic and phosphoproteomic signatures in people with prediabetes and T2DM and provides novel insight into the pathobiology of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Estado Prediabético , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Fosfoproteínas/metabolismo , Estado Prediabético/metabolismo , Proteoma/metabolismo , Proteómica/métodos
7.
PLoS One ; 16(7): e0252048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264955

RESUMEN

Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.


Asunto(s)
Neoplasias Meníngeas/genética , Meningioma/genética , Neurilemoma/genética , Neurofibromina 2/deficiencia , Neurofibromina 2/genética , Compuestos Organofosforados/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Proliferación Celular , Humanos , Mutación , Neurilemoma/patología
8.
Neuro Oncol ; 21(4): 486-497, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30615146

RESUMEN

BACKGROUND: Neurofibromatosis type 2 (NF2) is a genetic tumor-predisposition disorder caused by NF2/merlin tumor suppressor gene inactivation. The hallmark of NF2 is formation of bilateral vestibular schwannomas (VS). Because merlin modulates activity of the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, we investigated repurposing drugs targeting MEK1 and/or MEK2 as a treatment for NF2-associated schwannomas. METHODS: Mouse and human merlin-deficient Schwann cell lines (MD-MSC/HSC) were screened against 6 MEK1/2 inhibitors. Efficacious drugs were tested in orthotopic allograft and NF2 transgenic mouse models. Pathway and proteome analyses were conducted. Drug efficacy was examined in primary human VS cells with NF2 mutations and correlated with DNA methylation patterns. RESULTS: Trametinib, PD0325901, and cobimetinib were most effective in reducing MD-MSC/HSC viability. Each decreased phosphorylated pERK1/2 and cyclin D1, increased p27, and induced caspase-3 cleavage in MD-MSCs. Proteomic analysis confirmed cell cycle arrest and activation of pro-apoptotic pathways in trametinib-treated MD-MSCs. The 3 inhibitors slowed allograft growth; however, decreased pERK1/2, cyclin D1, and Ki-67 levels were observed only in PD0325901 and cobimetinib-treated grafts. Tumor burden and average tumor size were reduced in trametinib-treated NF2 transgenic mice; however, tumors did not exhibit reduced pERK1/2 levels. Trametinib and PD0325901 modestly reduced viability of several primary human VS cell cultures with NF2 mutations. DNA methylation analysis of PD0325901-resistant versus -susceptible VS identified genes that could contribute to drug resistance. CONCLUSION: MEK inhibitors exhibited differences in antitumor efficacy resistance in schwannoma models with possible emergence of trametinib resistance. The results support further investigation of MEK inhibitors in combination with other targeted drugs for NF2 schwannomas.


Asunto(s)
Azetidinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neuroma Acústico , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridonas/farmacología , Pirimidinonas/farmacología , Animales , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Ratones , Neurofibromatosis 2/complicaciones , Neuroma Acústico/etiología
9.
PLoS One ; 13(6): e0197350, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29897904

RESUMEN

Neurofibromatosis 2 (NF2) is a rare tumor suppressor syndrome that manifests with multiple schwannomas and meningiomas. There are no effective drug therapies for these benign tumors and conventional therapies have limited efficacy. Various model systems have been created and several drug targets have been implicated in NF2-driven tumorigenesis based on known effects of the absence of merlin, the product of the NF2 gene. We tested priority compounds based on known biology with traditional dose-concentration studies in meningioma and schwann cell systems. Concurrently, we studied functional kinome and gene expression in these cells pre- and post-treatment to determine merlin deficient molecular phenotypes. Cell viability results showed that three agents (GSK2126458, Panobinostat, CUDC-907) had the greatest activity across schwannoma and meningioma cell systems, but merlin status did not significantly influence response. In vivo, drug effect was tumor specific with meningioma, but not schwannoma, showing response to GSK2126458 and Panobinostat. In culture, changes in both the transcriptome and kinome in response to treatment clustered predominantly based on tumor type. However, there were differences in both gene expression and functional kinome at baseline between meningioma and schwannoma cell systems that may form the basis for future selective therapies. This work has created an openly accessible resource (www.synapse.org/SynodosNF2) of fully characterized isogenic schwannoma and meningioma cell systems as well as a rich data source of kinome and transcriptome data from these assay systems before and after treatment that enables single and combination drug discovery based on molecular phenotype.


Asunto(s)
Neoplasias Meníngeas/genética , Neurilemoma/genética , Neurofibromatosis 2/genética , Neurofibromina 2/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Meníngeas/tratamiento farmacológico , Neoplasias Meníngeas/patología , Ratones , Morfolinas/farmacología , Neurilemoma/tratamiento farmacológico , Neurilemoma/patología , Neurofibromatosis 2/tratamiento farmacológico , Neurofibromatosis 2/patología , Panobinostat/farmacología , Piridazinas , Pirimidinas/farmacología , Quinolinas/farmacología , Sulfonamidas/farmacología , Biología de Sistemas , Transcriptoma/genética
10.
Methods Mol Biol ; 1739: 161-173, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29546707

RESUMEN

Schwannomas are benign nerve tumors that occur sporadically in the general population and in those with neurofibromatosis type 2 (NF2), a tumor predisposition genetic disorder. NF2-associated schwannomas and most sporadic schwannomas are caused by inactivating mutations in Schwann cells in the neurofibromatosis type 2 gene (NF2) that encodes the merlin tumor suppressor. Despite their benign nature, schwannomas and especially vestibular schwannomas cause considerable morbidity. The primary available therapies are surgery or radiosurgery which usually lead to loss of function of the compromised nerve. Thus, there is a need for effective chemotherapies. We established an untransformed merlin-deficient human Schwann cell line for use in drug discovery studies for NF2-associated schwannomas. We describe the generation of human Schwann cells (HSCs) with depletion of merlin and their application in high-throughput screening of chemical libraries to identify compounds that decrease their viability. This NF2-HSC model is amenable for use in independent labs and high-throughput screening (HTS) facilities.


Asunto(s)
Neurofibromina 2/metabolismo , Células de Schwann/citología , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/genética , Células Cultivadas , Descubrimiento de Drogas , Humanos , Neurilemoma/metabolismo , Neurofibromatosis 2/metabolismo , Neurofibromina 2/deficiencia , Neurofibromina 2/genética , Células de Schwann/metabolismo , Bibliotecas de Moléculas Pequeñas
11.
Oncotarget ; 8(19): 31666-31681, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28427224

RESUMEN

Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/ß, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/ß, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation.


Asunto(s)
Antineoplásicos/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Imidazoles/farmacología , Neurofibromina 2/deficiencia , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas/farmacología , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Ciclina D1/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neurilemoma/genética , Neurilemoma/metabolismo , Neurilemoma/patología , Paxillin/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo
12.
Am J Transl Res ; 6(5): 471-93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25360213

RESUMEN

Mutations in the merlin tumor suppressor gene cause Neurofibromatosis type 2 (NF2), which is a disease characterized by development of multiple benign tumors in the nervous system. The current standard of care for NF2 calls for surgical resection of the characteristic tumors, often with devastating neurological consequences. There are currently no approved non-surgical therapies for NF2. In an attempt to identify much needed targets and therapeutically active compounds for NF2 treatment, we employed a chemical biology approach using ultra-high-throughput screening. To support this goal, we created a merlin-null mouse Schwann cell (MSC) line to screen for compounds that selectively decrease their viability and proliferation. We optimized conditions for 384-well plate assays and executed a proof-of-concept screen of the Library of Pharmacologically Active Compounds. Further confirmatory and selectivity assays identified phosphatidylinositol 3-kinase (PI3K) as a potential NF2 drug target. Notably, loss of merlin function is associated with activation of the PI3K/Akt pathway in human schwannomas. We report that AS605240, a PI3K inhibitor, decreased merlin-null MSC viability in a dose-dependent manner without significantly decreasing viability of control Schwann cells. AS605240 exerted its action on merlin-null MSCs by promoting caspase-dependent apoptosis and inducing autophagy. Additional PI3K inhibitors tested also decreased viability of merlin-null MSCs in a dose-dependent manner. In summary, our chemical genomic screen and subsequent hit validation studies have identified PI3K as potential target for NF2 therapy.

13.
Oncotarget ; 4(12): 2354-65, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24259290

RESUMEN

Mutations in the NF2 gene cause Neurofibromatosis Type 2 (NF2), a disorder characterized by the development of schwannomas, meningiomas and ependymomas in the nervous system. Merlin, a tumor suppressor encoded by the NF2 gene, modulates activity of many essential signaling pathways. Yet despite increasing knowledge of merlin function, there are no NF2 drug therapies. In a pilot high-throughput screen of the Library of Pharmacologically Active Compounds, we assayed for compounds capable of reducing viability of mouse Schwann cells (MSC) with Nf2 inactivation as a cellular model for human NF2 schwannomas. AGK2, a SIRT2 (sirtuin 2) inhibitor, was identified as a candidate compound. SIRT2 is one of seven mammalian sirtuins that are NAD+-dependent protein deacetylases. We show that merlin-mutant MSC have higher expression levels of SIRT2 and lower levels of overall lysine acetylation than wild-type control MSC. Pharmacological inhibition of SIRT2 decreases merlin-mutant MSC viability in a dose dependent manner without substantially reducing wild-type MSC viability. Inhibition of SIRT2 activity in merlin-mutant MSC is accompanied by release of lactate dehydrogenase and high mobility group box 1 protein into the medium in the absence of significant apoptosis, autophagy, or cell cycle arrest. These findings suggest that SIRT2 inhibition triggers necrosis of merlin-mutant MSCs and that SIRT2 is a potential NF2 drug target.


Asunto(s)
Neurofibromatosis 2/tratamiento farmacológico , Neurofibromatosis 2/patología , Neurofibromina 2/genética , Células de Schwann/metabolismo , Células de Schwann/patología , Sirtuina 2/antagonistas & inhibidores , Acetilación , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Genes Supresores de Tumor , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Necrosis , Neurofibromatosis 2/genética , Neurofibromatosis 2/metabolismo , Neurofibromina 2/metabolismo , Células de Schwann/efectos de los fármacos , Transducción de Señal , Sirtuina 2/metabolismo
14.
J Neurosci ; 32(15): 5284-97, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496574

RESUMEN

Myelination is a complex process requiring coordination of directional motility and an increase in glial cell size to generate a multilamellar myelin sheath. Regulation of actin dynamics during myelination is poorly understood. However, it is known that myelin thickness is related to the abundance of neuregulin-1 (NRG1) expressed on the axon surface. Here we identify cofilin1, an actin depolymerizing and severing protein, as a downstream target of NRG1 signaling in rat Schwann cells (SCs). In isolated SCs, NRG1 promotes dephosphorylation of cofilin1 and its upstream regulators, LIM kinase (LIMK) and Slingshot-1 phosphatase (SSH1), leading to cofilin1 activation and recruitment to the leading edge of the plasma membrane. These changes are associated with rapid membrane expansion yielding a 35-50% increase in SC size within 30 min. Cofilin1-deficient SCs increase phosphorylation of ErbB2, ERK, focal adhesion kinase, and paxillin in response to NRG1, but fail to increase in size possibly due to stabilization of unusually long focal adhesions. Cofilin1-deficient SCs cocultured with sensory neurons do not myelinate. Ultrastructural analysis reveals that they unsuccessfully segregate or engage axons and form only patchy basal lamina. After 48 h of coculturing with neurons, cofilin1-deficient SCs do not align or elongate on axons and often form adhesions with the underlying substrate. This study identifies cofilin1 and its upstream regulators, LIMK and SSH1, as end targets of a NRG1 signaling pathway and demonstrates that cofilin1 is necessary for dynamic changes in the cytoskeleton needed for axon engagement and myelination by SCs.


Asunto(s)
Cofilina 1/genética , Cofilina 1/fisiología , Vaina de Mielina/fisiología , Neurregulina-1/genética , Neurregulina-1/fisiología , Células de Schwann/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Animales , Axones/fisiología , Axones/ultraestructura , Western Blotting , Polaridad Celular/genética , Proliferación Celular , Tamaño de la Célula , Técnicas de Cocultivo , Colorantes , Femenino , Técnica del Anticuerpo Fluorescente , Adhesiones Focales/genética , Ganglios Espinales/citología , Quinasas Lim/genética , Quinasas Lim/fisiología , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Microscopía Electrónica , Vaina de Mielina/ultraestructura , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/fisiología , Fosforilación , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Células de Schwann/ultraestructura
15.
Nat Med ; 17(3): 377-82, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21336284

RESUMEN

Huntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis. Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntington's disease in vitro and in a mouse model of Huntington's disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntington's disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin-mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntington's disease.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Modelos Animales de Enfermedad , Dinaminas , Humanos , Proteína Huntingtina , Ratones , Mitocondrias/enzimología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Unión Proteica
16.
J Alzheimers Dis ; 20 Suppl 2: S513-26, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20463395

RESUMEN

Mitochondrial dysfunction and synaptic loss are among the earliest events linked to Alzheimer's disease (AD) and might play a causative role in disease onset and progression. The underlying mechanisms of mitochondrial and synaptic dysfunction in AD remain unclear. We previously reported that nitric oxide (NO) triggers persistent mitochondrial fission and causes neuronal cell death. A recent article claimed that S-nitrosylation of dynamin related protein 1 (DRP1) at cysteine 644 causes protein dimerization and increased GTPase activity and is the mechanism responsible for NO-induced mitochondrial fission and neuronal injury in AD, but not in Parkinson's disease (PD). However, this report remains controversial. To resolve the controversy, we investigated the effects of S-nitrosylation on DRP1 structure and function. Contrary to the previous report, S-nitrosylation of DRP1 does not increase GTPase activity or cause dimerization. In fact, DRP1 does not exist as a dimer under native conditions, but rather as a tetramer capable of self-assembly into higher order spiral- and ring-like oligomeric structures after nucleotide binding. S-nitrosylation, as confirmed by the biotin-switch assay, has no impact on DRP1 oligomerization. Importantly, we found no significant difference in S-nitrosylated DRP1 (SNO-DRP1) levels in brains of age-matched normal, AD, or PD patients. We also found that S-nitrosylation is not specific to DRP1 because S-nitrosylated optic atrophy 1 (SNO-OPA1) is present at comparable levels in all human brain samples. Finally, we show that NO triggers DRP1 phosphorylation at serine 616, which results in its activation and recruitment to mitochondria. Our data indicate the mechanism underlying nitrosative stress-induced mitochondrial fragmentation in AD is not DRP1 S-nitrosylation.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Encéfalo/enzimología , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Enfermedades Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Biotina/metabolismo , Encéfalo/ultraestructura , Línea Celular Transformada , Cisteína/genética , Cisteína/metabolismo , Ditiotreitol/farmacología , Dinaminas , GTP Fosfohidrolasas/genética , Humanos , Microscopía Electrónica de Transmisión/métodos , Proteínas Asociadas a Microtúbulos/genética , Enfermedades Mitocondriales/complicaciones , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/genética , Cambios Post Mortem , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/fisiología
17.
Trends Neurosci ; 31(12): 609-16, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18951640

RESUMEN

Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder that gradually robs affected individuals of memory, cognitive skills and normal movements. Although research has identified a single faulty gene, the huntingtin gene, as the cause of the disease, a cure remains elusive. Strong evidence indicates that mitochondrial impairment plays a key part in HD pathogenesis. Here, we highlight how mutant huntingtin (mtHtt) might cause mitochondrial dysfunction by either perturbing transcription of nuclear-encoded mitochondrial proteins or by direct interaction with the organelle and modulation of respiration, mitochondrial membrane potential and Ca(2+) buffering. In addition, we propose that mtHtt might convey its neurotoxicity by evoking defects in mitochondrial dynamics, organelle trafficking and fission and fusion, which, in turn, might result in bioenergetic failure and HD-linked neuronal dysfunction and cell death. Finally, we speculate how mitochondria might dictate selective vulnerability of long projection neurons, such as medium spiny neurons, which are particularly affected in HD.


Asunto(s)
Enfermedades Mitocondriales/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Animales , Humanos , Proteína Huntingtina , Mitocondrias/patología , Mitocondrias/fisiología , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...