Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(1): 102843, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294909

RESUMEN

Ubiquitin-like protein ISG15 plays an important role in an array of cellular functions via its covalent attachment to target proteins (ISGylation). Here, we present a protocol for the identification of ISGylated proteins that avoids the caveats associated with ISG15 overexpression and minimizes the likelihood of false positives. We describe steps for the tagging of endogenous ISG15, followed by genotyping and clone selection. We then detail steps for ISGylation induction, the isolation of ISGylated proteins, and their identification via quantitative mass spectrometry. For complete details on the use and execution of this protocol, please refer to Wardlaw and Petrini.1.


Asunto(s)
Citocinas , Ubiquitinas , Animales , Citocinas/genética , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitinas/química , Ubiquitinas/metabolismo , Línea Celular , Mamíferos/metabolismo
2.
Bioessays ; 45(7): e2300042, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37147792

RESUMEN

Interferon stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is highly induced upon activation of interferon signaling and cytoplasmic DNA sensing pathways. As part of the innate immune system ISG15 acts to inhibit viral replication and particle release via the covalent conjugation to both viral and host proteins. Unlike ubiquitin, unconjugated ISG15 also functions as an intracellular and extra-cellular signaling molecule to modulate the immune response. Several recent studies have shown ISG15 to also function in a diverse array of cellular processes and pathways outside of the innate immune response. This review explores the role of ISG15 in maintaining genome stability, particularly during DNA replication, and how this relates to cancer biology. It puts forth the hypothesis that ISG15, along with DNA sensors, function within a DNA replication fork surveillance pathway to help maintain genome stability.


Asunto(s)
Citocinas , Interferones , ADN , Replicación del ADN , Inmunidad Innata , Ubiquitinas/genética , Ubiquitinas/metabolismo , Humanos , Animales
3.
Nat Commun ; 13(1): 5971, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216822

RESUMEN

The pathways involved in suppressing DNA replication stress and the associated DNA damage are critical to maintaining genome integrity. The Mre11 complex is unique among double strand break (DSB) repair proteins for its association with the DNA replication fork. Here we show that Mre11 complex inactivation causes DNA replication stress and changes in the abundance of proteins associated with nascent DNA. One of the most highly enriched proteins at the DNA replication fork upon Mre11 complex inactivation was the ubiquitin like protein ISG15. Mre11 complex deficiency and drug induced replication stress both led to the accumulation of cytoplasmic DNA and the subsequent activation of innate immune signaling via cGAS-STING-Tbk1. This led to ISG15 induction and protein ISGylation, including constituents of the replication fork. ISG15 plays a direct role in preventing replication stress. Deletion of ISG15 was associated with replication fork stalling, tonic ATR activation, genomic aberrations, and sensitivity to aphidicolin. These data reveal a previously unrecognized role for ISG15 in mitigating DNA replication stress and promoting genomic stability.


Asunto(s)
Reparación del ADN , Replicación del ADN , Afidicolina , ADN/genética , Daño del ADN , Replicación del ADN/genética , Nucleotidiltransferasas/genética , Ubiquitinas/genética
4.
Elife ; 112022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36190107

RESUMEN

During the development of humoral immunity, activated B lymphocytes undergo vigorous proliferative, transcriptional, metabolic, and DNA remodeling activities; hence, their genomes are constantly exposed to an onslaught of genotoxic agents and processes. Branched DNA intermediates generated during replication and recombinational repair pose genomic threats if left unresolved and so, they must be eliminated by structure-selective endonucleases to preserve the integrity of these DNA transactions for the faithful duplication and propagation of genetic information. To investigate the role of two such enzymes, GEN1 and MUS81, in B cell biology, we established B-cell conditional knockout mouse models and found that deletion of GEN1 and MUS81 in early B-cell precursors abrogates the development and maturation of B-lineage cells while the loss of these enzymes in mature B cells inhibit the generation of robust germinal centers. Upon activation, these double-null mature B lymphocytes fail to proliferate and survive while exhibiting transcriptional signatures of p53 signaling, apoptosis, and type I interferon response. Metaphase spreads of these endonuclease-deficient cells showed severe and diverse chromosomal abnormalities, including a preponderance of chromosome breaks, consistent with a defect in resolving recombination intermediates. These observations underscore the pivotal roles of GEN1 and MUS81 in safeguarding the genome to ensure the proper development and proliferation of B lymphocytes.


Asunto(s)
Endonucleasas , Interferón Tipo I , Animales , Ratones , Linfocitos B/metabolismo , ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Interferón Tipo I/metabolismo , Proteína p53 Supresora de Tumor , Genoma
5.
Nat Commun ; 12(1): 3016, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021146

RESUMEN

Telomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells. Depletion of RTEL1 leads to increased levels of TERRA RNA while reducing TERRA-containing R loops at telomeres. In vitro, RTEL1 shows a strong preference for binding G-quadruplex structures which form in TERRA. This binding is mediated by the C-terminal region of RTEL1, and is independent of the RTEL1 helicase domain. RTEL1 binding to TERRA appears to be essential for cell viability, underscoring the importance of this function. Degradation of TERRA-containing R-loops by overexpression of RNAse H1 partially recapitulates the increased TERRA levels and telomeric instability associated with RTEL1 deficiency. Collectively, these data suggest that regulation of TERRA is a key function of the RTEL1 helicase, and that loss of that function may contribute to the disease phenotypes of patients with RTEL1 mutations.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Dominios Proteicos , Estructuras R-Loop , ARN , Ribonucleasa H , Alineación de Secuencia , Telómero , Factores de Transcripción/genética
6.
Cell Rep ; 33(13): 108559, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378670

RESUMEN

The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50E1035Δ) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain. This mutation represents a human RAD50 separation-of-function mutation that impairs DNA repair, DNA replication, and DNA end resection without affecting ATM-dependent DNA damage response. Purified recombinant proteins indicate that RAD50E1035Δ impairs MRE11 nuclease activity. The corresponding mutation in Saccharomyces cerevisiae causes severe thermosensitive defects in both DNA repair and Tel1ATM-dependent signaling. These findings demonstrate that a minor heptad break in the RAD50 coiled coil suffices to impede MRE11 complex functions in human and yeast. Furthermore, these results emphasize the importance of the RAD50 coiled coil to regulate MRE11-dependent DNA end resection in humans.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Trastornos de Fallo de la Médula Ósea/genética , Niño , Preescolar , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Discapacidades del Desarrollo/genética , Humanos , Unión Proteica , Dominios Proteicos , Análisis de Secuencia de Proteína , Eliminación de Secuencia , Transducción de Señal
7.
PLoS Genet ; 16(3): e1008422, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187176

RESUMEN

The DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene- induced carcinogenesis. The complex is integral to all modes of DNA double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S. cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was severely impaired while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Carcinogénesis/genética , Saccharomyces cerevisiae/genética , Animales , Daño del ADN/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Genómica/métodos , Proteína Homóloga de MRE11/genética , Mutación/genética , Células Sf9 , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética
8.
Cell Rep ; 30(5): 1385-1399.e7, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023457

RESUMEN

The Mre11-Rad50-Nbs1 complex is a DNA double-strand break sensor that mediates a tumor-suppressive DNA damage response (DDR) in cells undergoing oncogenic stress, yet the mechanisms underlying this effect are poorly understood. Using a genetically inducible primary mammary epithelial cell model, we demonstrate that Mre11 suppresses proliferation and DNA damage induced by diverse oncogenic drivers through a p53-independent mechanism. Breast tumorigenesis models engineered to express a hypomorphic Mre11 allele exhibit increased levels of oncogene-induced DNA damage, R-loop accumulation, and chromosomal instability with a characteristic copy number loss phenotype. Mre11 complex dysfunction is identified in a subset of human triple-negative breast cancers and is associated with increased sensitivity to DNA-damaging therapy and inhibitors of ataxia telangiectasia and Rad3 related (ATR) and poly (ADP-ribose) polymerase (PARP). Thus, deficiencies in the Mre11-dependent DDR drive proliferation and genome instability patterns in p53-deficient breast cancers and represent an opportunity for therapeutic exploitation.


Asunto(s)
Carcinogénesis/patología , Daño del ADN , Inestabilidad Genómica , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Inestabilidad Cromosómica , Células Epiteliales/metabolismo , Dosificación de Gen , Células HEK293 , Humanos , Proteína Homóloga de MRE11/metabolismo , Glándulas Mamarias Animales/patología , Ratones , Modelos Biológicos , Oncogenes , Fenotipo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Estructuras R-Loop
9.
Cell Rep ; 28(6): 1564-1573.e3, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390569

RESUMEN

Non-homologous end joining (NHEJ) and homologous recombination (HR) are the two major pathways of DNA double-strand break (DSB) repair and both are highly conserved from yeast to mammals. Nej1 has a role in DNA end-tethering at a DSB, and the Mre11/Rad50/Xrs2 (MRX) complex is important for its recruitment to the break. Nej1 and Dna2-Sgs1 interact with the C-terminal end of Mre11, which also includes the region where Rad50 binds. By characterizing the functionality of Nej1 in two rad50 mutants, which alter the structural features of MRX, we demonstrate that Nej1 inhibits the binding of Dna2 to Mre11 and Sgs1. Nej1 interactions with Mre11 promote tethering and inhibit hyper-resection, and when these events are compromised, large deletions develop at a DSB. The work indicates that Nej1 provides a layer of regulation to repair pathway choice and is consistent with its role in NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN de Hongos/metabolismo , Complejos Multiproteicos/metabolismo , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae
10.
Proc Natl Acad Sci U S A ; 116(30): 15178-15183, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285322

RESUMEN

We derived a mouse model in which a mutant form of Nbn/Nbs1mid8 (hereafter Nbnmid8) exhibits severely impaired binding to the Mre11-Rad50 core of the Mre11 complex. The Nbnmid8 allele was expressed exclusively in hematopoietic lineages (in Nbn-/mid8vav mice). Unlike Nbnflox/floxvav mice with Nbn deficiency in the bone marrow, Nbn-/mid8vav mice were viable. Nbn-/mid8vav mice hematopoiesis was profoundly defective, exhibiting reduced cellularity of thymus and bone marrow, and stage-specific blockage of B cell development. Within 6 mo, Nbn-/mid8 mice developed highly penetrant T cell leukemias. Nbn-/mid8vav leukemias recapitulated mutational features of human T cell acute lymphoblastic leukemia (T-ALL), containing mutations in NOTCH1, TP53, BCL6, BCOR, and IKZF1, suggesting that Nbnmid8 mice may provide a venue to examine the relationship between the Mre11 complex and oncogene activation in the hematopoietic compartment. Genomic analysis of Nbn-/mid8vav malignancies showed focal amplification of 9qA2, causing overexpression of MRE11 and CHK1 We propose that overexpression of MRE11 compensates for the metastable Mre11-Nbnmid8 interaction, and that selective pressure for overexpression reflects the essential role of Nbn in promoting assembly and activity of the Mre11 complex.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , Proteína Homóloga de MRE11/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfocitos T/inmunología , Ácido Anhídrido Hidrolasas/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Médula Ósea/inmunología , Médula Ósea/patología , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/inmunología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/inmunología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/inmunología , Modelos Animales de Enfermedad , Inestabilidad Genómica/inmunología , Hematopoyesis/genética , Hematopoyesis/inmunología , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/inmunología , Proteína Homóloga de MRE11/inmunología , Ratones , Ratones Noqueados , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/prevención & control , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Receptor Notch1/genética , Receptor Notch1/inmunología , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Transducción de Señal , Linfocitos T/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología
11.
PLoS One ; 14(1): e0209995, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30653527

RESUMEN

Squamous cell carcinoma-related oncogene (SCCRO, also known as DCUN1D1) is a component of the E3 for neddylation. As such, DCUN1D1 regulates the neddylation of cullin family members. Targeted inactivation of DCUN1D1 in mice results in male-specific infertility. Infertility in DCUN1D1-/- mice is secondary to primary defects in spermatogenesis. Time-dam experiments mapped the onset of the defect in spermatogenesis to 5.5 to 6 weeks of age, which temporally corresponds to defects in spermiogenesis. Although the first round of spermatogenesis progressed normally, the number of spermatozoa released into the seminiferous lumen and epididymis of DCUN1D1-/- mice was significantly reduced. Spermatozoa in DCUN1D1-/- mice had multiple abnormalities, including globozoospermia, macrocephaly, and multiple flagella. Many of the malformed spermatozoa in DCUN1D1-/- mice were multinucleated, with supernumerary and malpositioned centrioles, suggesting a defect in the resolution of intercellular bridges. The onset of the defect in spermatogenesis in DCUN1D1-/- mice corresponds to an increase in DCUN1D1 expression observed during normal spermatogenesis. Moreover, consistent with its known function as a component of the E3 in neddylation, the pattern of DCUN1D1 expression temporally correlates with an increase in the neddylated cullin fraction and stage-specific increases in the total ubiquitinated protein pool in wild-type mice. Levels of neddylated Cul3 were decreased in DCUN1D1-/- mice, and ubiquitinated proteins did not accumulate during the stages in which DCUN1D1 expression peaks during spermatogenesis in wild-type mice. Combined, these findings suggest that DCUN1D1-/- mice fail to release mature spermatozoa into the seminiferous lumen, possibly due to unresolved intercellular bridges. Furthermore, the effects of DCUN1D1 on spermatogenesis likely involve its regulation of cullin-RING-ligase (CRL)-type ubiquitin E3 activity during spermiogenesis through its role in promoting Cul3 neddylation. The specific CRLs required for spermiogenesis and their protein targets require identification.


Asunto(s)
Eliminación de Gen , Proteínas Proto-Oncogénicas/genética , Espermatogénesis , Espermatozoides/patología , Animales , Células Cultivadas , Proteínas Cullin/metabolismo , Marcación de Gen , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Ubiquitinación
12.
Nat Struct Mol Biol ; 24(3): 248-257, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28134932

RESUMEN

The Rad50 hook interface is crucial for assembly and various functions of the Mre11 complex. Previous analyses suggested that Rad50 molecules interact within (intracomplex) or between (intercomplex) dimeric complexes. In this study, we determined the structure of the human Rad50 hook and coiled-coil domains. The data suggest that the predominant structure is the intracomplex, in which the two parallel coiled coils proximal to the hook form a rod shape, and that a novel interface within the coiled-coil domains of Rad50 stabilizes the interaction of Rad50 protomers in the dimeric assembly. In yeast, removal of the coiled-coil interface compromised Tel1 activation without affecting DNA repair, while simultaneous disruption of that interface and the hook phenocopied a null mutation. The results demonstrate that the hook and coiled-coil interfaces coordinately promote intracomplex assembly and define the intracomplex as the functional form of the Mre11 complex.


Asunto(s)
Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/metabolismo , Multimerización de Proteína , Ácido Anhídrido Hidrolasas , Secuencia de Aminoácidos , Puntos de Control del Ciclo Celular , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , Reparación del ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Meiosis , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Soluciones , Zinc/metabolismo
13.
Cell Rep ; 18(2): 496-507, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28076792

RESUMEN

The Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential Mre11 complex functions that are mediated by Nbs1, we used TALEN-based genome editing to derive Nbs1 mutant mice (Nbs1mid mice), which harbor mutations in the Mre11 interaction domain of Nbs1. Nbs1mid alleles that abolished interaction were incompatible with viability. Conversely, a 108-amino-acid Nbs1 fragment comprising the Mre11 interface was sufficient to rescue viability and ATM activation in cultured cells and support differentiation of hematopoietic cells in vivo. These data indicate that the essential role of Nbs1 is via its interaction with Mre11 and that most of the Nbs1 protein is dispensable for Mre11 complex functions and suggest that Mre11 and Rad50 directly activate ATM.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Carcinogénesis/patología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/deficiencia , Supervivencia Celular , Secuencia Conservada , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN , Desarrollo Embrionario , Evolución Molecular , Feto/citología , Hematopoyesis , Hígado/embriología , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Unión Proteica , Multimerización de Proteína
15.
Chromosoma ; 125(1): 151-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26232174

RESUMEN

The MRE11 complex (MRE11, RAD50, and NBS1) is a central component of the DNA damage response, governing both double-strand break repair and DNA damage response signaling. To determine the functions of the MRE11 complex in the development and maintenance of oocytes, we analyzed ovarian phenotypes of mice harboring the hypomorphic Mre11 (ATLD1) allele. Mre11 (ATLD1/ATLD1) females exhibited premature oocyte elimination attributable to defects in homologous chromosome pairing and double-strand break repair during meiotic prophase. Other aspects of meiotic progression, including attachment of telomeres to the nuclear envelope and recruitment of RAD21L, a component of the meiotic cohesin complex to the synaptonemal complex, were normal. Unlike Dmc1 (-/-) and Trp13 (Gt/Gt) mice which exhibit comparable defects in double-strand break repair and oocyte depletion by 5 days post-partum, we found that oocyte attrition occurred by 12 weeks in Mre11 (ATLD1/ATLD1) . Disruption of the oocyte checkpoint pathway governed by Chk2 gene further enhanced the survival of Mre11 (ATLD1/ATLD1) follicles. Together our data suggest that the MRE11 complex influences the elimination of oocytes with unrepaired meiotic double-strand breaks post-natally, in addition to its previously described role in double-strand break repair and homologous synapsis during female meiosis.


Asunto(s)
Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/fisiología , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Meiosis , Oocitos/metabolismo , Oogonios/metabolismo , Animales , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Proteína Homóloga de MRE11 , Ratones , Ratones Transgénicos , Oogénesis , Oogonios/fisiología
16.
Mol Cancer Res ; 14(2): 185-95, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26538284

RESUMEN

UNLABELLED: The Mre11 complex (Mre11, Rad50, and Nbs1) occupies a central node of the DNA damage response (DDR) network and is required for ATM activation in response to DNA damage. Hypomorphic alleles of MRE11 and NBS1 confer embryonic lethality in ATM-deficient mice, indicating that the complex exerts ATM-independent functions that are essential when ATM is absent. To delineate those functions, a conditional ATM allele (ATM(flox)) was crossed to hypomorphic NBS1 mutants (Nbs1(ΔB/ΔB) mice). Nbs1(ΔB/ΔB) Atm(-/-) hematopoietic cells derived by crossing to vav(cre) were viable in vivo. Nbs1(ΔB/ΔB) Atm(-/-) (VAV) mice exhibited a pronounced defect in double-strand break repair and completely penetrant early onset lymphomagenesis. In addition to repair defects observed, fragile site instability was noted, indicating that the Mre11 complex promotes genome stability upon replication stress in vivo. The data suggest combined influences of the Mre11 complex on DNA repair, as well as the responses to DNA damage and DNA replication stress. IMPLICATIONS: A novel mouse model was developed, by combining a vav(cre)-inducible ATM knockout mouse with an NBS1 hypomorphic mutation, to analyze ATM-independent functions of the Mre11 complex in vivo. These data show that the DNA repair, rather than DDR signaling functions of the complex, is acutely required in the context of ATM deficiency to suppress genome instability and lymphomagenesis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Sitios Frágiles del Cromosoma , Reparación del ADN , Modelos Animales de Enfermedad , Linfoma/genética , Proteínas Nucleares/genética , Edad de Inicio , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN , Ratones , Ratones Noqueados , Mutación
17.
Mol Cell ; 57(3): 479-91, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25601756

RESUMEN

Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions.


Asunto(s)
Cromátides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Mutación , Fenotipo , Conformación Proteica , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
18.
Mol Cell ; 57(4): 622-635, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25620558

RESUMEN

The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase.


Asunto(s)
ADN Helicasas/fisiología , Modelos Genéticos , Fase S , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/fisiología , Animales , Células Cultivadas , ADN Helicasas/química , ADN Helicasas/metabolismo , Humanos , Metafase , Ratones , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
19.
Cancer Discov ; 4(9): 1014-21, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24934408

RESUMEN

UNLABELLED: Metastatic solid tumors are almost invariably fatal. Patients with disseminated small-cell cancers have a particularly unfavorable prognosis, with most succumbing to their disease within two years. Here, we report on the genetic and functional analysis of an outlier curative response of a patient with metastatic small-cell cancer to combined checkpoint kinase 1 (CHK1) inhibition and DNA-damaging chemotherapy. Whole-genome sequencing revealed a clonal hemizygous mutation in the Mre11 complex gene RAD50 that attenuated ATM signaling which in the context of CHK1 inhibition contributed, via synthetic lethality, to extreme sensitivity to irinotecan. As Mre11 mutations occur in a diversity of human tumors, the results suggest a tumor-specific combination therapy strategy in which checkpoint inhibition in combination with DNA-damaging chemotherapy is synthetically lethal in tumor cells but not normal cells with somatic mutations that impair Mre11 complex function. SIGNIFICANCE: Strategies to effect deep and lasting responses to cancer therapy in patients with metastatic disease have remained difficult to attain, especially in early-phase clinical trials. Here, we present an in-depth genomic and functional genetic analysis identifying RAD50 hypomorphism as a contributing factor to a curative response to systemic combination therapy in a patient with recurrent, metastatic small-cell cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Mutación , Neoplasias/genética , Ácido Anhídrido Hidrolasas , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Variaciones en el Número de Copia de ADN , Daño del ADN , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Activación Enzimática , Genómica , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Fosforilación , Conformación Proteica , Alineación de Secuencia , Resultado del Tratamiento
20.
Nat Neurosci ; 17(6): 813-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24793032

RESUMEN

DNA damage is considered to be a prime factor in several spinocerebellar neurodegenerative diseases; however, the DNA lesions underpinning disease etiology are unknown. We observed the endogenous accumulation of pathogenic topoisomerase-1 (Top1)-DNA cleavage complexes (Top1ccs) in murine models of ataxia telangiectasia and spinocerebellar ataxia with axonal neuropathy 1. We found that the defective DNA damage response factors in these two diseases cooperatively modulated Top1cc turnover in a non-epistatic and ATM kinase-independent manner. Furthermore, coincident neural inactivation of ATM and DNA single-strand break repair factors, including tyrosyl-DNA phosphodiesterase-1 or XRCC1, resulted in increased Top1cc formation and excessive DNA damage and neurodevelopmental defects. Notably, direct Top1 poisoning to elevate Top1cc levels phenocopied the neuropathology of the mouse models described above. Our results identify a critical endogenous pathogenic lesion associated with neurodegenerative syndromes arising from DNA repair deficiency, indicating that genome integrity is important for preventing disease in the nervous system.


Asunto(s)
ADN-Topoisomerasas de Tipo I/genética , Inestabilidad Genómica/genética , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Animales , Línea Celular , Células Cultivadas , Daño del ADN/genética , ADN-Topoisomerasas de Tipo I/deficiencia , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Enfermedades Neurodegenerativas/patología , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...