Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(2): e24368, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298614

RESUMEN

Radiation therapy is a first-line treatment for head and neck cancer; however, it typically leads to hyposalivation stemming from fibrosis of the salivary gland. Current strategies to restore glandular function are dependent on the presence of residual functional salivary gland tissue, a condition commonly not met in patients with extensive fibrotic coverage of the salivary gland resulting from radiation therapy. Fibrosis is defined by the pathological accumulation of connective tissue (i.e., extracellular matrix) and excessive deposition of crosslinked (fibrillar) collagen that can impact a range of tissues and given that collagen crosslinking is necessary for fibrosis formation, inhibiting this process is a reasonable focus for developing anti-fibrotic therapies. Collagen crosslinking is catalyzed by the lysyl oxidase family of secreted copper-dependent metalloenzymes, and since that copper is an essential cofactor in all lysyl oxidase family members, we tested whether localized delivery of a copper chelator into the submandibular gland of irradiated mice could suppress collagen deposition and preserve the structure and function of this organ. Our results demonstrate that transdermal injection of tetrathiomolybdate into salivary glands significantly reduced the early deposition of fibrillar collagen in irradiated mice and preserved the integrity and function of submandibular gland epithelial tissue. Together, these studies identify copper metabolism as a novel therapeutic target to control radiation induced damage to the salivary gland and the current findings further indicate the therapeutic potential of repurposing clinically approved copper chelators as neoadjuvant treatments for radiation therapy.

2.
Metallomics ; 15(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37391383

RESUMEN

Cu (Cu) is essential for several biochemical pathways due to its role as a catalytic cofactor or allosteric regulator of enzymes. Its import and distribution are tightly controlled by transporters and metallochaperones and Cu homeostasis is maintained by balancing Cu uptake and export. Genetic diseases are caused by impaired Cu transporters CTR1, ATP7A, or ATP7B but little is known about the regulatory mechanisms by which these proteins meet the fluctuating demands of Cu in specific tissues. Cu is required for differentiation of skeletal myoblasts to myotubes. Here, we demonstrate that ATP7A is needed for myotube formation and that its increased abundance during differentiation is mediated by stabilization of Atp7a mRNA via the 3' untranslated region. Increased ATP7A levels during differentiation resulted in increased Cu delivery to lysyl oxidase, a secreted cuproenzyme that needed for myotube formation. These studies identify a previously unknown role for Cu in regulating muscle differentiation and have broad implications for understanding Cu-dependent differentiation in other tissues.


Asunto(s)
Fibras Musculares Esqueléticas , ARN , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Diferenciación Celular , ARN Mensajero/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cobre/metabolismo
3.
Commun Biol ; 6(1): 403, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072620

RESUMEN

Tyrosinase (TYR) and tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2) are essential for pigmentation. They are generally classified as type-3 copper proteins, with binuclear copper active sites. Although there is experimental evidence for a copper cofactor in TYR, delivered via the copper transporter, ATP7A, the presence of copper in TYRP1 and TYRP2 has not been demonstrated. Here, we report that the expression and function of TYRP1 requires zinc, mediated by ZNT5-ZNT6 heterodimers (ZNT5-6) or ZNT7-ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in hypopigmentation in medaka fish and human melanoma cells, and is accompanied by immature melanosomes and reduced melanin content, as observed in TYRP1 dysfunction. The requirement of ZNT5-6 and ZNT7 for TYRP1 expression is conserved in human, mouse, and chicken orthologs. Our results provide novel insights into the pigmentation process and address questions regarding metalation in tyrosinase protein family.


Asunto(s)
Proteínas de Transporte de Catión , Vías Secretoras , Animales , Ratones , Humanos , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Zinc/metabolismo , Cobre/metabolismo , Pigmentación , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(10): e2216722120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848556

RESUMEN

Recent studies have uncovered the therapeutic potential of elesclomol (ES), a copper-ionophore, for copper deficiency disorders. However, we currently do not understand the mechanism by which copper brought into cells as ES-Cu(II) is released and delivered to cuproenzymes present in different subcellular compartments. Here, we have utilized a combination of genetic, biochemical, and cell-biological approaches to demonstrate that intracellular release of copper from ES occurs inside and outside of mitochondria. The mitochondrial matrix reductase, FDX1, catalyzes the reduction of ES-Cu(II) to Cu(I), releasing it into mitochondria where it is bioavailable for the metalation of mitochondrial cuproenzyme- cytochrome c oxidase. Consistently, ES fails to rescue cytochrome c oxidase abundance and activity in copper-deficient cells lacking FDX1. In the absence of FDX1, the ES-dependent increase in cellular copper is attenuated but not abolished. Thus, ES-mediated copper delivery to nonmitochondrial cuproproteins continues even in the absence of FDX1, suggesting alternate mechanism(s) of copper release. Importantly, we demonstrate that this mechanism of copper transport by ES is distinct from other clinically used copper-transporting drugs. Our study uncovers a unique mode of intracellular copper delivery by ES and may further aid in repurposing this anticancer drug for copper deficiency disorders.


Asunto(s)
Cobre , Complejo IV de Transporte de Electrones , Hidrazinas , Ionóforos , Ferredoxinas/metabolismo
5.
Invest Ophthalmol Vis Sci ; 63(6): 18, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35727180

RESUMEN

Purpose: To develop a mouse model of human dry eye disease (DED) for investigation of sex differences in autoimmune-associated dry eye pathology. Methods: Ocular surface disease was assessed by quantifying corneal epithelial damage with lissamine green stain in the NOD.H-2h4,IFNγ-/-,CD28-/- (NOD.H-2h4 DKO) mouse model of Sjögren's syndrome (SS). Lacrimal gland function was assessed by tear volume quantification with phenol red thread and lacrimal gland inflammation (i.e., dacryoadenitis) was assessed by quantification of immune cell foci, flow cytometric analysis of immune cell composition, and expression of proinflammatory markers. Results: The NOD.H-2h4 DKO mouse model of SS exhibits greater age-dependent increases in corneal damage than in NOD.H-2h4 parental mice and demonstrates an earlier disease onset in females compared to males. The severity of ocular surface disease correlates with loss of goblet cell density, increased conjunctivitis, and dacryoadenitis that is more pronounced in NOD.H-2h4 DKO than NOD.H-2h4 mice. B cells dominate lacrimal infiltrates in 16-week-old NOD.H-2h4 and NOD.H-2h4 DKO mice, but T helper cells and macrophages are also present. Lacrimal gland expression of proinflammatory genes, including the P2X7 and P2Y2 purinergic receptors, is greater in NOD.H-2h4 DKO than NOD.H-2h4 mice and correlates with dacryoadenitis. Conclusions: Our results demonstrate for the first time that autoimmune dry eye disease occurs in both sexes of NOD.H-2h4 DKO and NOD.H-2h4 mice, with earlier onset in female NOD.H-2h4 DKO mice when compared to males of the same strain. This study demonstrates that both NOD.H-2h4 and NOD.H-2h4 DKO mice are novel models that closely resemble SS-related and sex-dependent DED.


Asunto(s)
Dacriocistitis , Síndromes de Ojo Seco , Aparato Lagrimal , Síndrome de Sjögren , Animales , Dacriocistitis/patología , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/metabolismo , Femenino , Aparato Lagrimal/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismo
6.
Nat Rev Cancer ; 22(2): 102-113, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34764459

RESUMEN

Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.


Asunto(s)
Cobre , Neoplasias , Autofagia , Proliferación Celular , Cobre/metabolismo , Humanos , Transducción de Señal
7.
J Inorg Biochem ; 219: 111424, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33765639

RESUMEN

Copper is an essential metal for virtually all organisms, yet little is known about the extracellular sources of this micronutrient. In serum, the most abundant extracellular Cu-binding molecule is the multi­copper oxidase ceruloplasmin (Cp). Cp levels increase during infection and inflammation, and pathogens can be exposed to high Cp at sites of infection. It is not known whether Cp might serve as a Cu source for microbial pathogens and we tested this using the opportunistic fungal pathogen Candida albicans. We find that C. albicans can use whole serum as a Cu source and that this Cu is sensed by the transcription factor protein Mac1. Mac1 activates expression of Mn-SOD3 superoxide dismutase and represses Cu/Zn-SOD1 during Cu starvation and both responses are regulated by serum Cu. We also show that purified human Cp can act as a sole source of Cu for the fungus and likewise modulates the Mac1 Cu stress response. To investigate whether Cp is a Cu source in serum, we compared the ability of C. albicans to use serum from wild type versus Cp-/- mutant mice. We find that serum lacking Cp is deficient in its ability to trigger the Mac1 Cu response. C. albicans did accumulate Cu from Cp-/- serum, but this Cu was not efficiently sensed by Mac1. We conclude that Cp and non-Cp Cu sources are not equivalent and are handled differently by the fungal cell. Overall, these studies are the first to show that Cp is a preferred source of Cu for a pathogen.


Asunto(s)
Candida albicans/metabolismo , Candidiasis/metabolismo , Ceruloplasmina/metabolismo , Cobre/metabolismo , Animales , Cobre/sangre , Femenino , Proteínas Fúngicas/metabolismo , Humanos , Masculino , Ratones , Proteínas Nucleares/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Factores de Transcripción/metabolismo
8.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118893, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33091507

RESUMEN

The last 25 years have witnessed tremendous progress in identifying and characterizing proteins that regulate the uptake, intracellular trafficking and export of copper. Although dietary copper is required in trace amounts, sufficient quantities of this metal are needed to sustain growth and development in humans and other mammals. However, copper is also a rate-limiting nutrient for the growth and proliferation of cancer cells. Oral copper chelators taken with food have been shown to confer anti-neoplastic and anti-metastatic benefits in animals and humans. Recent studies have begun to identify specific roles for copper in pathways of oncogenic signaling and resistance to anti-neoplastic drugs. Here, we review the general mechanisms of cellular copper homeostasis and discuss roles of copper in cancer progression, highlighting metabolic vulnerabilities that may be targetable in the development of anticancer therapies.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinogénesis/metabolismo , Cobre/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Carcinogénesis/patología , Progresión de la Enfermedad , Homeostasis/efectos de los fármacos , Humanos , Neoplasias/patología
9.
Oral Oncol ; 109: 104808, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32540611

RESUMEN

OBJECTIVES: To assess functional expression of the P2Y2 nucleotide receptor (P2Y2R) in head and neck squamous cell carcinoma (HNSCC) cell lines and define its role in nucleotide-induced epidermal growth factor receptor (EGFR) transactivation. The use of anti-EGFR therapeutics to treat HNSCC is hindered by intrinsic and acquired drug resistance. Defining novel pathways that modulate EGFR signaling could identify additional targets to treat HNSCC. MATERIALS AND METHODS: In human HNSCC cell lines CAL27 and FaDu and the mouse oral cancer cell line MOC2, P2Y2R contributions to extracellular nucleotide-induced changes in intracellular free Ca2+ concentration and EGFR and extracellular signal-regulated kinase (ERK1/2) phosphorylation were determined using the ratiometric Ca2+ indicator fura-2 and immunoblot analysis, respectively. Genetic knockout of P2Y2Rs using CRISPR technology or pharmacological inhibition with P2Y2R-selective antagonist AR-C118925 defined P2Y2R contributions to in vivo tumor growth. RESULTS: P2Y2R agonists UTP and ATP increased intracellular Ca2+ levels and ERK1/2 and EGFR phosphorylation in CAL27 and FaDu cells, responses that were inhibited by AR-C118925 or P2Y2R knockout. P2Y2R-mediated EGFR phosphorylation was also attenuated by inhibition of the adamalysin family of metalloproteases or Src family kinases. P2Y2R knockout reduced UTP-induced CAL27 cell proliferation in vitro and significantly reduced CAL27 and FaDu tumor xenograft volume in vivo. In a syngeneic mouse model of oral cancer, AR-C118925 administration reduced MOC2 tumor volume. CONCLUSION: P2Y2Rs mediate HNSCC cell responses to extracellular nucleotides and genetic or pharmacological blockade of P2Y2R signaling attenuates tumor cell proliferation and tumorigenesis, suggesting that the P2Y2R represents a novel therapeutic target in HNSCC.

10.
Sci Rep ; 10(1): 7856, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398691

RESUMEN

Copper (Cu) is an essential, yet potentially toxic nutrient, as illustrated by inherited diseases of copper deficiency and excess. Elevated expression of the ATP7A Cu exporter is known to confer copper tolerance, however, the contribution of metal-binding metallothioneins is less clear. In this study, we investigated the relative contributions of ATP7A and the metallothioneins MT-I and MT-II to cell viability under conditions of Cu excess or deficiency. Although the loss of ATP7A increased sensitivity to low Cu concentrations, the absence of MTs did not significantly affect Cu tolerance. However, the absence of all three proteins caused a synthetic lethal phenotype due to extreme Cu sensitivity, indicating that MTs are critical for Cu tolerance only in the absence of ATP7A. A lack of MTs resulted in the trafficking of ATP7A from the trans-Golgi complex in a Cu-dependent manner, suggesting that MTs regulate the delivery of Cu to ATP7A. Under Cu deficiency conditions, the absence of MTs and / or ATP7A enhanced cell proliferation compared to wild type cells, suggesting that these proteins compete with essential Cu-dependent pathways when Cu is scarce. These studies reveal new roles for ATP7A and metallothioneins under both Cu deficiency and excess.


Asunto(s)
ATPasas Transportadoras de Cobre/metabolismo , Cobre/farmacología , Metalotioneína/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , ATPasas Transportadoras de Cobre/deficiencia , ATPasas Transportadoras de Cobre/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Metalotioneína/deficiencia , Metalotioneína/genética , Ratones , Mutación , Transporte de Proteínas/efectos de los fármacos
11.
Science ; 368(6491): 620-625, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32381719

RESUMEN

Loss-of-function mutations in the copper (Cu) transporter ATP7A cause Menkes disease. Menkes is an infantile, fatal, hereditary copper-deficiency disorder that is characterized by progressive neurological injury culminating in death, typically by 3 years of age. Severe copper deficiency leads to multiple pathologies, including impaired energy generation caused by cytochrome c oxidase dysfunction in the mitochondria. Here we report that the small molecule elesclomol escorted copper to the mitochondria and increased cytochrome c oxidase levels in the brain. Through this mechanism, elesclomol prevented detrimental neurodegenerative changes and improved the survival of the mottled-brindled mouse-a murine model of severe Menkes disease. Thus, elesclomol holds promise for the treatment of Menkes and associated disorders of hereditary copper deficiency.


Asunto(s)
Cobre/metabolismo , Hidrazinas/uso terapéutico , Síndrome del Pelo Ensortijado/tratamiento farmacológico , Animales , Transporte Biológico/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Transportador de Cobre 1/genética , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Hidrazinas/farmacología , Masculino , Síndrome del Pelo Ensortijado/metabolismo , Síndrome del Pelo Ensortijado/patología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Ratas
12.
Metallomics ; 12(3): 416-426, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31976503

RESUMEN

Animals carefully control homeostasis of Cu, a metal that is both potentially toxic and an essential nutrient. During infection, various shifts in Cu homeostasis can ensue. In mice infected with Candida albicans, serum Cu progressively rises and at late stages of infection, liver Cu rises, while kidney Cu declines. The basis for these changes in Cu homeostasis was poorly understood. We report here that the progressive rise in serum Cu is attributable to liver production of the multicopper oxidase ceruloplasmin (Cp). Through studies using Cp-/- mice, we find this elevated Cp helps recover serum Fe levels at late stages of infection, consistent with a role for Cp in loading transferrin with Fe. Cp also accounts for the elevation in liver Cu seen during infection, but not for the fluctuations in kidney Cu. The Cu exporting ATPase ATP7B is one candidate for kidney Cu control, but we find no change in the pattern of kidney Cu loss during infection of Atp7b-/- mice, implying alternative mechanisms. To test whether fungal infiltration of kidney tissue was required for kidney Cu loss, we explored other paradigms of infection. Infection with the intravascular malaria parasite Plasmodium berghei caused a rise in serum Cu and decrease in kidney Cu similar to that seen with C. albicans. Thus, dynamics in kidney Cu homeostasis appear to be a common feature among vastly different infection paradigms. The implications for such Cu homeostasis control in immunity are discussed.


Asunto(s)
Candida albicans/fisiología , Candidiasis/metabolismo , Cobre/metabolismo , Animales , Candidiasis/sangre , Ceruloplasmina/metabolismo , Cobre/sangre , Femenino , Homeostasis , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
13.
Diabetologia ; 62(12): 2340-2353, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31396659

RESUMEN

AIMS/HYPOTHESIS: ATPase copper transporting α (ATP7A), also known as Menkes disease protein, is a P-type ATPase that transports copper across cell membranes. The critical role of ATP7A-mediated copper homeostasis has been well recognised in various organs, such as the intestine, macrophages and the nervous system. However, the importance of adipocyte ATP7A-mediated copper homeostasis on fat metabolism is not well understood. Here, we sought to reveal the contribution of adipose ATP7A to whole-body fat metabolism in mice. METHODS: We generated adipocyte-specific Atp7a-knockout (ASKO) mice using the Cre/loxP system, with Cre expression driven by the adiponectin promoter. ASKO mice and littermate control mice were aged on a chow diet or fed with a high-fat diet (HFD); body weight, fat mass, and glucose and insulin metabolism were analysed. Histological analysis, transmission electron microscopy and RNA-sequencing (RNA-Seq) analysis of white adipose tissue (WAT) were used to understand the physiological and molecular changes associated with loss of copper homeostasis in adipocytes. RESULTS: Significantly increased copper concentrations were observed in adipose tissues of ASKO mice compared with control mice. Aged or HFD-fed ASKO mice manifested a lipoatrophic phenotype characterised by a progressive generalised loss of WAT. Dysfunction of adipose tissues in these ASKO mice was confirmed by decreased levels of both serum leptin and adiponectin and increased levels of triacylglycerol and insulin. Systemic metabolism was also impaired in these mice, as evidenced by a pronounced glucose intolerance, insulin resistance and hepatic steatosis. Moreover, we demonstrate a significant induction of lipolysis and DNA-damage signalling pathways in gonadal WAT from aged and HFD-fed ASKO mice. In vitro studies suggest that copper overload is responsible for increased lipolysis and DNA damage. CONCLUSIONS/INTERPRETATION: Our results show a previously unappreciated role of adipocyte Atp7a in the regulation of ageing-related metabolic disease and identify new metallophysiologies in whole-body fat metabolism. DATA AVAILABILITY: The datasets generated during the current study are available in the Genome Sequence Archive in BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, under accession number CRA001769 (http://bigd.big.ac.cn/gsa).


Asunto(s)
Adipocitos/metabolismo , Envejecimiento/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Metabolismo de los Lípidos/genética , Lipodistrofia/metabolismo , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Envejecimiento/genética , Animales , Peso Corporal/fisiología , ATPasas Transportadoras de Cobre/genética , Dieta Alta en Grasa , Metabolismo Energético/fisiología , Resistencia a la Insulina/fisiología , Lipodistrofia/genética , Lipólisis/genética , Ratones , Ratones Noqueados
14.
Proc Natl Acad Sci U S A ; 116(14): 6836-6841, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30890638

RESUMEN

Lysyl oxidase (LOX) and LOX-like (LOXL) proteins are copper-dependent metalloenzymes with well-documented roles in tumor metastasis and fibrotic diseases. The mechanism by which copper is delivered to these enzymes is poorly understood. In this study, we demonstrate that the copper transporter ATP7A is necessary for the activity of LOX and LOXL enzymes. Silencing of ATP7A inhibited LOX activity in the 4T1 mammary carcinoma cell line, resulting in a loss of LOX-dependent mechanisms of metastasis, including the phosphorylation of focal adhesion kinase and myeloid cell recruitment to the lungs, in an orthotopic mouse model of breast cancer. ATP7A silencing was also found to attenuate LOX activity and metastasis of Lewis lung carcinoma cells in mice. Meta-analysis of breast cancer patients found that high ATP7A expression was significantly correlated with reduced survival. Taken together, these results identify ATP7A as a therapeutic target for blocking LOX- and LOXL-dependent malignancies.


Asunto(s)
Carcinoma Pulmonar de Lewis/enzimología , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Neoplasias Mamarias Animales/enzimología , Proteínas de Neoplasias/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patología , ATPasas Transportadoras de Cobre/genética , Femenino , Humanos , Transporte Iónico , Masculino , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Metaanálisis como Asunto , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteína-Lisina 6-Oxidasa/genética
15.
J Biol Chem ; 294(8): 2815-2826, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593504

RESUMEN

Zinc is an essential trace element that serves as a cofactor for enzymes in critical biochemical processes and also plays a structural role in numerous proteins. Zinc transporter ZIP4 (ZIP4) is a zinc importer required for dietary zinc uptake in the intestine and other cell types. Studies in cultured cells have reported that zinc stimulates the endocytosis of plasma membrane-localized ZIP4 protein, resulting in reduced cellular zinc uptake. Thus, zinc-regulated trafficking of ZIP4 is a key means for regulating cellular zinc homeostasis, but the underlying mechanisms are not well understood. In this study, we used mutational analysis, immunoblotting, HEK293 cells, and immunofluorescence microscopy to identify a histidine-containing motif (398HTH) in the first extracellular loop that is required for high sensitivity to low zinc concentrations in a zinc-induced endocytic response of mouse ZIP4 (mZIP4). Moreover, using synthetic peptides with selective substitutions and truncated mZIP4 variants, we provide evidence that histidine residues in this motif coordinate a zinc ion in mZIP4 homodimers at the plasma membrane. These findings suggest that 398HTH is an important zinc-sensing motif for eliciting high-affinity zinc-stimulated endocytosis of mZIP4 and provide insight into cellular mechanisms for regulating cellular zinc homeostasis in mammalian cells.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Endocitosis/fisiología , Matriz Extracelular/metabolismo , Histidina/química , Proteínas Mutantes/metabolismo , Mutación , Zinc/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Células HEK293 , Histidina/metabolismo , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Transporte de Proteínas , Homología de Secuencia
16.
Hum Mol Genet ; 26(23): 4617-4628, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973536

RESUMEN

SCO1 is a ubiquitously expressed, mitochondrial protein with essential roles in cytochrome c oxidase (COX) assembly and the regulation of copper homeostasis. SCO1 patients present with severe forms of early onset disease, and ultimately succumb from liver, heart or brain failure. However, the inherent susceptibility of these tissues to SCO1 mutations and the clinical heterogeneity observed across SCO1 pedigrees remain poorly understood phenomena. To further address this issue, we generated Sco1hrt/hrt and Sco1stm/stm mice in which Sco1 was specifically deleted in heart and striated muscle, respectively. Lethality was observed in both models due to a combined COX and copper deficiency that resulted in a dilated cardiomyopathy. Left ventricular dilation and loss of heart function was preceded by a temporal decrease in COX activity and copper levels in the longer-lived Sco1stm/stm mice. Interestingly, the reduction in copper content of Sco1stm/stm cardiomyocytes was due to the mislocalisation of CTR1, the high affinity transporter that imports copper into the cell. CTR1 was similarly mislocalized to the cytosol in the heart of knockin mice carrying a homozygous G115S substitution in Sco1, which in humans causes a hypertrophic cardiomyopathy. Our current findings in the heart are in marked contrast to our prior observations in the liver, where Sco1 deletion results in a near complete absence of CTR1 protein. These data collectively argue that mutations perturbing SCO1 function have tissue-specific consequences for the machinery that ultimately governs copper homeostasis, and further establish the importance of aberrant mitochondrial signaling to the etiology of copper handling disorders.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Membrana Celular/metabolismo , Cobre/deficiencia , Transportador de Cobre 1 , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/genética , Homeostasis , Transporte Iónico , Metalochaperonas/genética , Metalochaperonas/metabolismo , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Transducción de Señal
17.
J Biol Chem ; 292(40): 16626-16637, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28798231

RESUMEN

Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1ß and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1ß, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1ß release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1ß release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.


Asunto(s)
Células Epiteliales/metabolismo , Interleucina-1beta/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Receptores Purinérgicos P2X7/metabolismo , Síndrome de Sjögren/metabolismo , Glándula Submandibular/metabolismo , Tetrazoles/farmacología , Animales , Antígenos CD28/genética , Antígenos CD28/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/patología , Inflamasomas , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Receptores Purinérgicos P2X7/genética , Síndrome de Sjögren/genética , Síndrome de Sjögren/patología , Sodio/metabolismo , Glándula Submandibular/patología
18.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28652309

RESUMEN

Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7aLysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7aLysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7aLysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7aLysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Interacciones Huésped-Patógeno , Macrófagos/enzimología , Salmonella typhimurium/enzimología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Transporte de Catión/genética , Cobre/toxicidad , Femenino , Macrófagos/inmunología , Masculino , Ratones Noqueados , Salmonelosis Animal/microbiología , Salmonelosis Animal/patología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/fisiología , Virulencia
19.
Metallomics ; 8(9): 993-1001, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27337370

RESUMEN

The ATP7A protein is a ubiquitous copper-transporting P-type ATPase that is mutated in the lethal pediatric disorder of copper metabolism, Menkes disease. The steady-state location of ATP7A is within the trans-Golgi network (TGN), where it delivers copper to copper-dependent enzymes within the secretory pathway. However, ATP7A constantly cycles between the TGN and the plasma membrane, and in the presence of high copper concentrations, the exocytic arm of this cycling pathway is enhanced to promote a steady-state distribution of ATP7A to post-Golgi vesicles and the plasma membrane. A single di-leucine endocytic motif within the cytosolic carboxy tail of ATP7A (1487LL) was previously shown to be essential for TGN localization by functioning in retrieval from the plasma membrane, however, the requirement of other di-leucine signals in this region has not been fully investigated. While there has been some success in identifying sequence elements within ATP7A required for trafficking and catalysis, progress has been hampered by the instability of the ATP7A cDNA in high-copy plasmids during replication in Escherichia coli. In this study, we find that the use of DNA synthesis to generate silent mutations across the majority of both mouse and human ATP7A open reading frames was sufficient to stabilize these genes in high-copy plasmids, thus permitting the generation of full-length expression constructs. Using the stabilized mouse Atp7a construct, we identify a second di-leucine motif in the carboxy tail of ATP7A (1459LL) as essential for steady-state localization in the TGN by functioning in endosome-to-TGN trafficking. Taken together, these findings demonstrate that multiple di-leucine signals are required for recycling ATP7A from the plasma membrane to the TGN and illustrate the utility of large-scale codon reassignment as a simple and effective approach to circumvent cDNA instability in high-copy plasmids.


Asunto(s)
ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Endocitosis/fisiología , Leucina/metabolismo , Red trans-Golgi/metabolismo , Animales , Membrana Celular , ATPasas Transportadoras de Cobre/genética , Células HEK293 , Humanos , Leucina/química , Leucina/genética , Ratones , Mutación , Transporte de Proteínas
20.
Dis Model Mech ; 9(1): 25-38, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26747866

RESUMEN

The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Transporte de Catión/genética , Cobre/toxicidad , Modelos Animales de Enfermedad , Degeneración Hepatolenticular/genética , Síndrome del Pelo Ensortijado/genética , Secuencia de Aminoácidos , Animales , ATPasas Transportadoras de Cobre , Perros , Retículo Endoplásmico/metabolismo , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Células Hep G2 , Humanos , Hígado/metabolismo , Masculino , Datos de Secuencia Molecular , Mutación Missense , Fenotipo , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA