Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chall ; 7(9): 2300062, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37745829

RESUMEN

Four pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap-free nature allows fabrication of virtually hysteresis-free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness.

2.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679399

RESUMEN

Pressure sensors integrated in surfaces, such as the floor, can enable movement, event, and object detection with relatively little effort and without raising privacy concerns, such as video surveillance. Usually, this requires a distributed array of sensor pixels, whose design must be optimized according to the expected use case to reduce implementation costs while providing sufficient sensitivity. In this work, we present an unobtrusive smart floor concept based on floor tiles equipped with a printed piezoelectric sensor matrix. The sensor element adds less than 130 µm in thickness to the floor tile and offers a pressure sensitivity of 36 pC/N for a 1 cm2 pixel size. A floor model was established to simulate how the localized pressure excitation acting on the floor spreads into the sensor layer, where the error is only 1.5%. The model is valuable for optimizing the pixel density and arrangement for event and object detection while considering the smart floor implementation in buildings. Finally, a demonstration, including wireless connection to the computer, is presented, showing the viability of the tile to detect finger touch or movement of a metallic rod.


Asunto(s)
Percepción del Tacto , Tacto
3.
ACS Appl Electron Mater ; 4(12): 6308-6321, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36588622

RESUMEN

Flexible electronics has paved the way toward the development of next-generation wearable and implantable healthcare devices, including multimodal sensors. Integrating flexible circuits with transducers on a single substrate is desirable for processing vital signals. However, the trade-off between low power consumption and high operating speed is a major bottleneck. Organic thin-film transistors (OTFTs) are suitable for developing flexible circuits owing to their intrinsic flexibility and compatibility with the printing process. We used a photoreactive insulating polymer poly((±)endo,exo-bicyclo[2.2.1]hept-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) to modulate the power consumption and operating speed of ultraflexible organic circuits fabricated on a single substrate. The turn-on voltage (V on) of the p- and n-type OTFTs was controlled through a nanoscale interfacial photochemical reaction. The time-of-flight secondary ion mass spectrometry revealed the preferential occurrence of the PNDPE photochemical reaction in the vicinity of the semiconductor-dielectric interface. The power consumption and operating speed of the ultraflexible complementary inverters were tuned by a factor of 6 and 4, respectively. The minimum static power consumption was 30 ± 9 pW at transient and 4 ± 1 pW at standby. Furthermore, within the tuning range of the operating speed and at a supply voltage above 2.5 V, the minimum stage delay time was of the order of hundreds of microseconds. We demonstrated electromyogram measurements to emphasize the advantage of the nanoscale interfacial photochemical reaction. Our study suggests that a nanoscale interfacial photochemical reaction can be employed to develop imperceptible and wearable multimodal sensors with organic signal processing circuits that exhibit low power consumption.

4.
Adv Mater ; 33(45): e2104446, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34545628

RESUMEN

Flexible electronics have gained considerable attention for application in wearable devices. Organic transistors are potential candidates to develop flexible integrated circuits (ICs). A primary technique for maximizing their reliability, gain, and operation speed is the modulation of charge-carrier behavior in the respective transistors fabricated on the same substrate. In this work, heterogeneous functional dielectric patterns (HFDP) of ultrathin polymer gate dielectrics of poly((±)endo,exo-bicyclo[2.2.1]hept-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) are introduced. The HFDP that are obtained via the photo-Fries rearrangement by ultraviolet radiation in the homogeneous PNDPE provide a functional area for charge-carrier modulation. This leads to programmable threshold voltage control over a wide range (-1.5 to +0.2 V) in the transistors with a high patterning resolution, at 2 V operational voltage. The transistors also exhibit high operational stability over 140 days and under the bias-stress duration of 1800 s. With the HFDP, the performance metrics of ICs, for example, the noise margin and gain of the zero-VGS load inverters and the oscillation frequency of ring oscillators are improved to 80%, 1200, and 2.5 kHz, respectively, which are the highest among the previously reported zero-VGS -based organic circuits. The HFDP can be applied to much complex and ultraflexible ICs.

5.
Nat Commun ; 12(1): 2399, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893292

RESUMEN

Energy autonomy and conformability are essential elements in the next generation of wearable and flexible electronics for healthcare, robotics and cyber-physical systems. This study presents ferroelectric polymer transducers and organic diodes for imperceptible sensing and energy harvesting systems, which are integrated on ultrathin (1-µm) substrates, thus imparting them with excellent flexibility. Simulations show that the sensitivity of ultraflexible ferroelectric polymer transducers is strongly enhanced by using an ultrathin substrate, which allows the mounting on 3D-shaped objects and the stacking in multiple layers. Indeed, ultraflexible ferroelectric polymer transducers have improved sensitivity to strain and pressure, fast response and excellent mechanical stability, thus forming imperceptible wireless e-health patches for precise pulse and blood pressure monitoring. For harvesting biomechanical energy, the transducers are combined with rectifiers based on ultraflexible organic diodes thus comprising an imperceptible, 2.5-µm thin, energy harvesting device with an excellent peak power density of 3 mW·cm-3.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles/instrumentación , Electrónica Médica/instrumentación , Transductores , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/métodos , Electrónica Médica/métodos , Humanos , Sistemas Microelectromecánicos/instrumentación , Sistemas Microelectromecánicos/métodos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Reproducibilidad de los Resultados , Robótica/instrumentación , Robótica/métodos
6.
J Mater Chem C Mater ; 5(10): 2603-2610, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28515937

RESUMEN

Cyanated pentacenes are very promising candidate materials for ambipolar and n-type transistors. However, only a few examples have been obtained to date - all requiring lengthy, multi-step processes. Herein, we present the first preparation of 5,7,12,14-tetracyanopentacene (TCP) and a facile, scaled-up preparation of 6,13-dicyanopentacene (DCP). Both compounds are prepared by a one-pot synthesis using cheap quinones as starting materials. Detailed crystallographic investigations evince that the bulk assemblies of both cyanated pentacenes are dominated by non-covalent interactions, resulting in a dense, stable, face-to-face packing and in an intriguing packing motif for TCP. Very low frontier molecular orbital energy levels and a reversible bleaching of TCP are revealed by cyclic voltammetry. Finally, both cyanated pentacenes are used in proof-of-concept organic thin-film transistors (OTFTs) operating under ambient conditions. This work highlights the potential of cyanation for larger acenes and presents a straightforward route to the rational design of this promising class of materials.

7.
Phys Status Solidi Rapid Res Lett ; 9(7): 420-424, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26457122

RESUMEN

We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance.

8.
Cellulose (Lond) ; 22(1): 717-727, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26412951

RESUMEN

In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we present a versatile toolbox that provides an easy patterning method for cellulose thin films by means of photolithography and enzymatic digestion. A patterned UV-illumination of trimethylsilyl cellulose thin films containing small amounts of a photo acid generator leads to a desilylation reaction and thus to the formation of cellulose in the irradiated areas. Depending on the conditions of development, either negative and positive type cellulose structures can be obtained, offering lateral resolutions down to the single-digit micro meter range by means of contact photolithography. In order to highlight the potential of this material for advanced patterning techniques, cellulose structures with sub-µm resolution are fabricated by means of two-photon absorption lithography. Moreover, these photochemically structured cellulose thin films are successfully implemented as dielectric layers in prototype organic thin film transistors. Such photopatternable dielectric layers are crucial for the realization of electrical interconnects for demanding organic device architectures.

10.
Phys Status Solidi Rapid Res Lett ; 9(6): 358-361, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26937256

RESUMEN

Thin film electronics fabricated with non-toxic and abundant materials are enabling for emerging bioelectronic technologies. Herein complementary-like inverters comprising transistors using 6,6'-dichloroindigo as the semiconductor and trimethylsilyl-cellulose (TMSC) films on anodized aluminum as bilayer dielectric layer are demonstrated. The inverters operate both in the first and third quadrant, exhibiting a maximum static gain of 22 and a noise margin of 58% at a supply voltage of 14 V. (© 2015 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim).

11.
Org Electron ; 14(11): 3070-3082, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24748853

RESUMEN

A high-performing bottom-gate top-contact pentacene-based oTFT technology with an ultrathin (25-48 nm) and electrically dense photopatternable polymeric gate dielectric layer is reported. The photosensitive polymer poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) is patterned directly by UV-exposure (λ = 254 nm) at a dose typical for conventionally used negative photoresists without the need for any additional photoinitiator. The polymer itself undergoes a photo-Fries rearrangement reaction under UV illumination, which is accompanied by a selective cross-linking of the macromolecules, leading to a change in solubility in organic solvents. This crosslinking reaction and the negative photoresist behavior are investigated by means of sol-gel analysis. The resulting transistors show a field-effect mobility up to 0.8 cm2 V-1 s-1 at an operation voltage as low as -4.5 V. The ultra-low subthreshold swing in the order of 0.1 V dec-1 as well as the completely hysteresis-free transistor characteristics are indicating a very low interface trap density. It can be shown that the device performance is completely stable upon UV-irradiation and development according to a very robust chemical rearrangement. The excellent interface properties, the high stability and the small thickness make the PNDPE gate dielectric a promising candidate for fast organic electronic circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...