Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32509590

RESUMEN

To discern if there was a particular genotype associated with clinical enteroaggregative Escherichia coli (EAEC) strains isolated from deployed military personnel (DMP) with travelers' diarrhea (TD), we characterized a collection of EAEC from DMP deployed to Afghanistan, Djibouti, Kenya, or Honduras. Although we did not identify a specific EAEC genotype associated with TD in DMP, we found that EAEC isolated at the first clinic visit were more likely to encode the dispersin gene aap than EAEC collected at follow-up visits. A majority of the EAEC isolates were typical EAEC that adhered to HEp-2 cells, formed biofilms, and harbored genes for aggregative adherence fimbriae (AAF), AggR, and serine protease autotransporters of Enterobacteriaceae (SPATEs). A separate subset of the EAEC had aggR and genes for SPATEs but encoded a gene highly homologous to that for CS22, a fimbriae more commonly found in enterotoxigenic E. coli. None of these CS22-encoding EAEC formed biofilms in vitro or adhered to HEp-2 cells. Whole genome sequence and single nucleotide polymorphism analyses demonstrated that most of the strains were genetically diverse, but that a few were closely related. Isolation of these related strains occurred within days to more than a year apart, a finding that suggests a persistent source and genomic stability. In an ampicillin-treated mouse model we found that an agg4A+ aar- isolate formed a biofilm in the intestine and caused reduced weight gain in mice, whereas a strain that did not form an in vivo biofilm caused no morbidity. Our diverse strain collection from DMP displays the heterogeneity of EAEC strains isolated from human patients, and our mouse model of infection indicated the genotype agg4A+ aar- and/or capacity to form biofilm in vivo may correlate to disease severity.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Personal Militar , Animales , Diarrea , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Kenia , Ratones , Viaje , Virulencia
2.
Artículo en Inglés | MEDLINE | ID: mdl-32175286

RESUMEN

In this study we compared nine Shiga toxin (Stx)-producing Escherichia coli O157:H7 patient isolates for Stx levels, stx-phage insertion site(s), and pathogenicity in a streptomycin (Str)-treated mouse model. The strains encoded stx2a, stx1a and stx2a, or stx2a and stx2c. All of the strains elaborated 105-106 cytotoxic doses 50% (CD50) into the supernatant after growth in vitro as measured on Vero cells, and showed variable levels of increased toxin production after growth with sub-inhibitory levels of ciprofloxacin (Cip). The stx2a+stx2c+ isolates were 90-100% lethal for Str-treated BALB/c mice, though one isolate, JH2013, had a delayed time-to-death. The stx2a+ isolate was avirulent. Both an stx2a and a recA deletion mutant of one of the stx2a+stx2c+ strains, JH2010, exhibited at least a three-log decrease in cytotoxicity in vitro and both were avirulent in the mice. Stool from Str-treated mice infected with the highly virulent isolates were 10- to 100-fold more cytotoxic than feces from mice infected with the clinical isolate, JH2012, that made only Stx2a. Taken together these findings demonstrate that the stx2a-phage from JH2010 induces to higher levels in vivo than does the phage from JH2012. The stx1a+stx2a+ clinical isolates were avirulent and neutralization of Stx1 in stool from mice infected with those strains indicated that the toxin produced in vivo was primarily Stx1a. Treatment of mice infected with Stx1a+Stx2a+ isolates with Cip resulted in an increase in Stx2a production in vivo and lethality in the mice. Our data suggest that high levels of Stx2a in stool are predictive of virulence in mice.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli O157 , Animales , Chlorocebus aethiops , Escherichia coli O157/genética , Heces , Humanos , Ratones , Ratones Endogámicos BALB C , Toxina Shiga II/genética , Células Vero , Virulencia
3.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30670557

RESUMEN

Shiga toxin (Stx)-producing Escherichia coli (STEC) causes foodborne outbreaks of bloody diarrhea. There are two major types of immunologically distinct Stxs: Stx1a and Stx2a. Stx1a is more cytotoxic to Vero cells than Stx2a, but Stx2a has a lower 50% lethal dose (LD50) in mice. Epidemiological data suggest that infections by STEC strains that produce only Stx2a progress more often to a life-threatening sequela of infection called hemolytic-uremic syndrome (HUS) than isolates that make Stx1a only or produce both Stx1a and Stx2a. In this study, we found that an E. coli O26:H11 strain that produces both Stx1a and Stx2a was virulent in streptomycin- and ciprofloxacin-treated mice and that mice were protected by administration of an anti-Stx2 antibody. However, we discovered that in the absence of ciprofloxacin, neutralization of Stx1a enhanced the virulence of the strain, a result that corroborated our previous finding that Stx1a reduces the toxicity of Stx2a by the oral route. We further found that intraperitoneal administration of the purified Stx1a B subunit delayed the mean time to death of mice intoxicated with Stx2a and reduced the cytotoxic effect of Stx2a on Vero cells. Taken together, our data suggest that Stx1a reduces both the pathogenicity of Stx2 in vivo and cytotoxicity in vitro.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Toxina Shiga I/toxicidad , Toxina Shiga II/toxicidad , Escherichia coli Shiga-Toxigénica/metabolismo , Animales , Chlorocebus aethiops , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/patogenicidad , Células Vero , Virulencia
4.
Infect Immun ; 86(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29610258

RESUMEN

Bacillus cereus G9241 caused a life-threatening anthrax-like lung infection in a previously healthy human. This strain harbors two large virulence plasmids, pBCXO1 and pBC210, that are absent from typical B. cereus isolates. The pBCXO1 plasmid is nearly identical to pXO1 from Bacillus anthracis and carries genes (pagA1, lef, and cya) for anthrax toxin components (protective antigen [called PA1 in G9241], lethal factor [LF], and edema factor [EF], respectively). The plasmid also has an intact hyaluronic acid capsule locus. The pBC210 plasmid has a tetrasaccharide capsule locus, a gene for a PA1 homolog called PA2 (pagA2), and a gene (cer) for Certhrax, an ADP-ribosyltransferase toxin that inactivates vinculin. LF, EF, and Certhrax require PA for entry into cells. In this study, we asked what role PA1, PA2, LF, and Certhrax play in the pathogenicity of G9241. To answer this, we generated isogenic deletion mutations in the targeted toxin gene components and then assessed the strains for virulence in highly G9241-susceptible (A/J) and moderately G9241-sensitive (C57BL/6) mice. We found that full virulence of G9241 required PA1 and LF, while PA2 contributed minimally to pathogenesis of G9241 but could not functionally replace PA1 as a toxin-binding subunit in vivo Surprisingly, we discovered that Certhrax attenuated the virulence of G9241; i.e., a Δcer Δlef mutant strain was more virulent than a Δlef mutant strain following subcutaneous inoculation of A/J mice. Moreover, the enzymatic activity of Certhrax contributed to this phenotype. We concluded that Certhrax acts as an antivirulence factor in the anthrax-like organism B. cereus G9241.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Bacillus cereus/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Animales , Anticuerpos Antibacterianos , Bacillus cereus/patogenicidad , Toxinas Bacterianas/genética , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Ratones , Mutación , Plásmidos/genética , Proteínas Recombinantes , Virulencia
5.
mBio ; 6(2)2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25805731

RESUMEN

UNLABELLED: Type IV pili (T4Ps) are surface appendages used by Gram-negative and Gram-positive pathogens for motility and attachment to epithelial surfaces. In Gram-negative bacteria, such as the important pediatric pathogen enteropathogenic Escherichia coli (EPEC), during extension and retraction, the pilus passes through an outer membrane (OM) pore formed by the multimeric secretin complex. The secretin is common to Gram-negative assemblies, including the related type 2 secretion (T2S) system and the type 3 secretion (T3S) system. The N termini of the secretin monomers are periplasmic and in some systems have been shown to mediate substrate specificity. In this study, we mapped the topology of BfpB, the T4P secretin from EPEC, using a combination of biochemical and biophysical techniques that allowed selective identification of periplasmic and extracellular residues. We applied rules based on solved atomic structures of outer membrane proteins (OMPs) to generate our topology model, combining the experimental results with secondary structure prediction algorithms and direct inspection of the primary sequence. Surprisingly, the C terminus of BfpB is extracellular, a result confirmed by flow cytometry for BfpB and a distantly related T4P secretin, PilQ, from Pseudomonas aeruginosa. Keeping with prior evidence, the C termini of two T2S secretins and one T3S secretin were not detected on the extracellular surface. On the basis of our data and structural constraints, we propose that BfpB forms a beta barrel with 16 transmembrane beta strands. We propose that the T4P secretins have a C-terminal segment that passes through the center of each monomer. IMPORTANCE: Secretins are multimeric proteins that allow the passage of secreted toxins and surface structures through the outer membranes (OMs) of Gram-negative bacteria. To date, there have been no atomic structures of the C-terminal region of a secretin, although electron microscopy (EM) structures of the complex are available. This work provides a detailed topology prediction of the membrane-spanning domain of a type IV pilus (T4P) secretin. Our study used innovative techniques to provide new and comprehensive information on secretin topology, highlighting similarities and differences among secretin subfamilies. Additionally, the techniques used in this study may prove useful for the study of other OM proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Escherichia coli Enteropatógena/química , Proteínas de Escherichia coli/química , Lipoproteínas/química , Sistemas de Secreción Tipo IV/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Citometría de Flujo , Lipoproteínas/genética , Modelos Moleculares , Conformación Proteica , Sistemas de Secreción Tipo IV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...