Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 9: 1426, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997616

RESUMEN

Intestinal microorganisms play a crucial role in health and disease. The disruption of host-microbiota homeostasis has been reported to occur not only during disease development but also as a result of medication. Familial Mediterranean fever (FMF) is an inflammatory genetic disease characterized by elevated systemic reactivity against the commensal gut microbiota and high levels of Candida albicans in the gut. This study's major objective was to investigate the effects of commercial probiotic Narine on the relative abundance of gut bacteria (specifically, enterobacteria, lactobacilli, Staphylococcus aureus, and enterococci) of C. albicans carrier and non-carrier FMF patients in remission. Our main finding indicates that the probiotic reduces numbers of C. albicans and abundance of enterobacteria in male and female patients of C. albicans carriers and non-carriers. It has pivotal effect on Enterococcus faecalis: increase in male non-carriers and decrease in female ones regardless of C. albicans status. No effect was seen for Lactobacillus and S. aureus. Our data suggest that M694V/V726A pyrin inflammasome mutations leading to FMF disease may contribute to gender-specific differences in microbial community structure in FMF patients. The study's secondary objective was to elucidate the gender-specific differences in the gut's microbial community of FMF patients. The tendency was detected for higher counts of enterobacteria in female FMF subjects. However, the small number of patients of these groups preclude from conclusive statements, pointing at the need for additional investigations with appropriate for statistical analysis groups of subjects involved in the study.

2.
Int J Cardiol ; 175(2): 297-306, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24908200

RESUMEN

BACKGROUND: Targeting the mitochondria during ischemia/reperfusion (IR) can confer cardioprotection leading to improved clinical outcomes. The cardioprotective potential of (-)-epicatechin (EPI) during IR via modulation of mitochondrial function was evaluated. METHODS AND RESULTS: Ischemia was induced in rats via a 45 min occlusion of the left anterior descending coronary artery followed by 1 h, 48 h, or 3 week reperfusion. EPI (10 mg/kg) was administered IV 15 min prior to reperfusion for the single dose group and again 12 h later for the double dose group. Controls received water. Experiments also utilized cultured neonatal rat ventricular myocytes (NRVM) and myoblasts. A single dose of EPI reduced infarct size by 27% at 48 h and 28% at 3 week. Double dose treatment further decreased infarct size by 80% at 48 h, and 52% by 3 weeks. The protective effect of EPI on mitochondrial function was evident after 1h of reperfusion when mitochondria demonstrated less respiratory inhibition, lower mitochondrial Ca2+ load, and a preserved pool of NADH that correlated with higher tissue ATP levels. Mechanistic studies in NRVM revealed that EPI acutely stimulated maximal rates of respiration, an effect that was blocked by inhibitors of the mitochondrial pyruvate carrier, nitric oxide synthase, or soluble guanylyl cyclase. In myoblasts, knockdown of components of the mitochondrial pyruvate carrier blocked EPI-induced respiratory stimulation. CONCLUSIONS: IV EPI confers cardioprotection via preservation of mitochondrial function potentially through enhanced substrate provision. These provocative results document a novel mechanism of a natural product with potential clinical utility.


Asunto(s)
Cardiotónicos/administración & dosificación , Catequina/administración & dosificación , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Animales , Animales Recién Nacidos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Infusiones Intravenosas , Masculino , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Sprague-Dawley
3.
Proc Natl Acad Sci U S A ; 110(14): 5422-7, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23513224

RESUMEN

Facilitated pyruvate transport across the mitochondrial inner membrane is a critical step in carbohydrate, amino acid, and lipid metabolism. We report that clinically relevant concentrations of thiazolidinediones (TZDs), a widely used class of insulin sensitizers, acutely and specifically inhibit mitochondrial pyruvate carrier (MPC) activity in a variety of cell types. Respiratory inhibition was overcome with methyl pyruvate, localizing the effect to facilitated pyruvate transport, and knockdown of either paralog, MPC1 or MPC2, decreased the EC50 for respiratory inhibition by TZDs. Acute MPC inhibition significantly enhanced glucose uptake in human skeletal muscle myocytes after 2 h. These data (i) report that clinically used TZDs inhibit the MPC, (ii) validate that MPC1 and MPC2 are obligatory components of facilitated pyruvate transport in mammalian cells, (iii) indicate that the acute effect of TZDs may be related to insulin sensitization, and (iv) establish mitochondrial pyruvate uptake as a potential therapeutic target for diseases rooted in metabolic dysfunction.


Asunto(s)
Respiración de la Célula/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas/fisiología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Acrilatos/farmacología , Análisis de Varianza , Animales , Proteínas de Transporte de Anión , Western Blotting , Línea Celular , Citocromos c/metabolismo , Glucosa/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Transportadoras de Solutos , Tiazolidinedionas/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(5): E387-96, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319652

RESUMEN

cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factor Inductor de la Apoptosis/metabolismo , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Células HeLa , Corazón/fisiopatología , Humanos , Peróxido de Hidrógeno/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Proteínas Nucleares/genética , Oxidantes/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley
5.
J Biol Chem ; 288(2): 915-26, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23152496

RESUMEN

It is known that loss-of-function mutations in the gene encoding Parkin lead to development of Parkinson disease. Recently, Parkin was found to play an important role in the removal of dysfunctional mitochondria via autophagy in neurons. Although Parkin is expressed in the heart, its functional role in this tissue is largely unexplored. In this study, we have investigated the role of Parkin in the myocardium under normal physiological conditions and in response to myocardial infarction. We found that Parkin-deficient (Parkin(-/-)) mice had normal cardiac function for up to 12 months of age as determined by echocardiographic analysis. Although ultrastructural analysis revealed that Parkin-deficient hearts had disorganized mitochondrial networks and significantly smaller mitochondria, mitochondrial function was unaffected. However, Parkin(-/-) mice were much more sensitive to myocardial infarction when compared with wild type mice. Parkin(-/-) mice had reduced survival and developed larger infarcts when compared with wild type mice after the infarction. Interestingly, Parkin protein levels and mitochondrial autophagy (mitophagy) were rapidly increased in the border zone of the infarct in wild type mice. In contrast, Parkin(-/-) myocytes had reduced mitophagy and accumulated swollen, dysfunctional mitochondria after the infarction. Overexpression of Parkin in isolated cardiac myocytes also protected against hypoxia-mediated cell death, whereas nonfunctional Parkinson disease-associated mutants ParkinR42P and ParkinG430D had no effect. Our results suggest that Parkin plays a critical role in adapting to stress in the myocardium by promoting removal of damaged mitochondria.


Asunto(s)
Infarto del Miocardio/fisiopatología , Sobrevida , Ubiquitina-Proteína Ligasas/fisiología , Animales , Western Blotting , Electrocardiografía , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias Cardíacas/fisiología , Ratas Sprague-Dawley , Ubiquitina-Proteína Ligasas/genética
6.
Cell Metab ; 15(5): 778-86, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560226

RESUMEN

The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Mitocondrias/metabolismo , Músculo Esquelético/fisiopatología , Transactivadores/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/genética , Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Parálisis/genética , Parálisis/metabolismo , Parálisis/fisiopatología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Transactivadores/genética , Factores de Transcripción
7.
Proc Natl Acad Sci U S A ; 108(48): E1227-35, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22084075

RESUMEN

A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) to intracellular sites where they preferentially phosphorylate target substrates. Most AKAPs exhibit nanomolar affinity for the regulatory (RII) subunit of the type II PKA holoenzyme, whereas dual-specificity anchoring proteins also bind the type I (RI) regulatory subunit of PKA with 10-100-fold lower affinity. A range of cellular, biochemical, biophysical, and genetic approaches comprehensively establish that sphingosine kinase interacting protein (SKIP) is a truly type I-specific AKAP. Mapping studies located anchoring sites between residues 925-949 and 1,140-1,175 of SKIP that bind RI with dissociation constants of 73 and 774 nM, respectively. Molecular modeling and site-directed mutagenesis approaches identify Phe 929 and Tyr 1,151 as RI-selective binding determinants in each anchoring site. SKIP complexes exist in different states of RI-occupancy as single-molecule pull-down photobleaching experiments show that 41 ± 10% of SKIP sequesters two YFP-RI dimers, whereas 59 ± 10% of the anchoring protein binds a single YFP-RI dimer. Imaging, proteomic analysis, and subcellular fractionation experiments reveal that SKIP is enriched at the inner mitochondrial membrane where it associates with a prominent PKA substrate, the coiled-coil helix protein ChChd3.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Análisis de Varianza , Animales , Western Blotting , Línea Celular , Clonación Molecular , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ratones , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Resonancia por Plasmón de Superficie , Transfección
8.
PLoS One ; 6(7): e21746, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799747

RESUMEN

Recently developed technologies have enabled multi-well measurement of O(2) consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1-10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples.


Asunto(s)
Técnicas Citológicas/métodos , Mitocondrias/metabolismo , Animales , Respiración de la Célula , Femenino , Masculino , Ratones , Consumo de Oxígeno , Ratas , Reproducibilidad de los Resultados , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA