Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(8): 1992-1996, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633038

RESUMEN

Successful generation of micelles, vesicles, and/or worms with controllable sizes was achieved through the self-assembly process of the poly[N-(2-hydroxypropyl)]methacrylamide-g-polylactide (PHPMAA-g-PLA) graft copolymer within a microfluidic channel. A product diagram was created to illustrate various morphologies associated with different polymer concentrations, all while maintaining a constant flow velocity ratio between water and the polymer solution.

2.
Colloids Surf B Biointerfaces ; 231: 113564, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742364

RESUMEN

Bioactive moieties designed to bind to cell membrane receptors benefit from coupling with polymeric carriers that have enhanced affinity to the cell membrane. When bound to the cell surface, such carriers create a "2D solution" of a ligand with a significantly increased concentration near a membrane-bound receptor compared to a freely water-soluble ligand. Bifunctional polymeric carriers based on amphiphilic triblock copolymers were synthesized from 2-pent-4-ynyl oxazoline, 2-nonyl oxazoline and 2-ethyl oxazoline. Their self-assembly and interactions with plasma proteins and HEK 293 cells were studied in detail. The affinity of these triblock copolymers to HEK 293 cell membranes and organ tissues was tunable by the overall hydrophobicity of the polymer molecule, which is determined by the length of the hydrophobic and hydrophilic blocks. The circulation time and biodistribution of three representative triblock copolymers were monitored after intravenous administration to C57BL/6 albino mice. A prolonged circulation time was observed for polymers with longer hydrophobic blocks, despite their molecular weight being below the renal threshold.


Asunto(s)
Micelas , Polímeros , Humanos , Ratones , Animales , Polímeros/química , Células HEK293 , Ligandos , Distribución Tisular , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Celular , Citoplasma
3.
Polymers (Basel) ; 13(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062772

RESUMEN

Here, we report on the construction of biodegradable poly(ethylene oxide monomethyl ether) (MPEO)-b-poly(ε-caprolactone) (PCL) nanoparticles (NPs) having acid-labile (acyclic ketal group) linkage at the block junction. In the presence of acidic pH, the nanoassemblies were destabilized as a consequence of cleaving this linkage. The amphiphilic MPEO-b-PCL diblock copolymer self-assembled in PBS solution into regular spherical NPs. The structure of self-assemble and disassemble NPs were characterized in detail by dynamic (DLS), static (SLS) light scattering, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). The key of the obtained NPs is using them in a paclitaxel (PTX) delivery system and study their in vitro cytostatic activity in a cancer cell model. The acid-labile ketal linker enabled the disassembly of the NPs in a buffer simulating an acidic environment in endosomal (pH ~5.0 to ~6.0) and lysosomal (pH ~4.0 to ~5.0) cell compartments resulting in the release of paclitaxel (PTX) and formation of neutral degradation products. The in vitro cytotoxicity studies showed that the activity of the drug-loaded NPs was increased compared to the free PTX. The ability of the NPs to release the drug at the endosomal pH with concomitant high cytotoxicity makes them suitable candidates as a drug delivery system for cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...