Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 11: 153, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140141

RESUMEN

Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge.

2.
Microb Biotechnol ; 12(6): 1324-1336, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31410982

RESUMEN

Wastewater treatment plants (WWTPs) contain high density and diversity of viruses which can significantly impact microbial communities in aquatic systems. While previous studies have investigated viruses in WWTP samples that have been specifically concentrated for viruses and filtered to exclude bacteria, little is known about viral communities associated with bacterial communities throughout wastewater treatment systems. Additionally, differences in viral composition between attached and suspended growth wastewater treatment bioprocesses are not well characterized. Here, shotgun metagenomics was used to analyse wastewater and biomass from transects through two full-scale WWTPs for viral composition and associations with bacterial hosts. One WWTP used a suspended growth activated sludge bioreactor and the other used a biofilm reactor (trickling filter). Myoviridae, Podoviridae and Siphoviridae were the dominant viral families throughout both WWTPs, which are all from the order Caudovirales. Beta diversity analysis of viral sequences showed that samples clustered significantly both by plant and by specific sampling location. For each WWTP, the overall bacterial community structure was significantly different than community structure of bacterial taxa associated with viral sequences. These findings highlight viral community composition in transects through different WWTPs and provide context for dsDNA viral sequences in bacterial communities from these systems.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Reactores Biológicos/virología , Metagenoma , Myoviridae/clasificación , Podoviridae/clasificación , Siphoviridae/clasificación , Aguas Residuales/virología , Myoviridae/genética , Podoviridae/genética , Siphoviridae/genética , Aguas Residuales/microbiología , Purificación del Agua
3.
Water Res ; 157: 396-405, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30974288

RESUMEN

Recent findings show that a subset of bacteria affiliated with Nitrospira, a genus known for its importance in nitrite oxidation for biological nutrient removal applications, are capable of complete ammonia oxidation (comammox) to nitrate. Early reports suggested that they were absent or present in low abundance in most activated sludge processes, and thus likely functionally irrelevant. Here we show the accumulation of comammox Nitrospira in a nitrifying sequencing batch reactor operated at low dissolved oxygen (DO) concentrations. Actual mainstream wastewater was used as influent after primary settling and an upstream pre-treatment process for carbon and phosphorus removal. The ammonia removal rate was stable and exceeded that of the treatment plant's parallel full-scale high DO nitrifying activated sludge reactor. 16S rRNA gene sequencing showed a steady accumulation of Nitrospira to 53% total abundance and a decline in conventional ammonia oxidizing bacteria to <1% total abundance over 400 + days of operation. After ruling out other known ammonia oxidizers, qPCR confirmed the accumulation of comammox Nitrospira beginning around day 200, to eventually comprise 94% of all detected amoA and 4% of total bacteria by day 407. Quantitative fluorescence in-situ hybridization confirmed the increasing trend and high relative abundance of Nitrospira. These results demonstrate that comammox can be metabolically relevant to nitrogen transformation in wastewater treatment, and can even dominate the ammonia oxidizing community. Our results suggest that comammox may be an important functional group in energy efficient nitrification systems designed to operate at low DO levels.


Asunto(s)
Amoníaco , Nitrificación , Bacterias , Oxidación-Reducción , Oxígeno , Filogenia , ARN Ribosómico 16S
4.
Biotechnol Bioeng ; 116(3): 543-554, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30512194

RESUMEN

Attached growth bioprocesses that use biofilms to remove organic matter or nutrients from wastewater are known to harbor antibiotic resistance genes (ARGs). Biofilms in these processes are spatially heterogeneous, but little is known about depth stratification of ARGs in complex, mixed culture biofilms. To address this knowledge gap, we used an experimental approach combining cryosectioning and quantitative polymerase chain reaction to quantify the spatial distribution of three ARGs (sul1, ermB, and qnrS) and the class 1 integron-integrase gene intI1 in biofilms from a lab-scale rotating annular reactor fed with synthetic wastewater. We also used high throughput 16S ribosomal RNA (rRNA) gene sequencing to characterize community structure with depth in biofilms. The ARG sul1 and the integron-integrase gene intI1 were found in higher abundances in upper layers of biofilm near the fluid-biofilm interface than in lower layers and exhibited significant correlations between the distance from substratum and gene abundances. The genes ermB and qnrS were present in comparatively low relative abundances. Microbial community structure varied significantly by date of sampling and distance from the substratum. These findings highlight the genetic and taxonomic heterogeneity with distance from substratum in wastewater treatment biofilms and show that sul1 and intI1 are particularly abundant near fluid-biofilm interfaces where cells are most likely to detach and flow into downstream portions of treatment systems and can ultimately be released into the environment through effluent.


Asunto(s)
Biopelículas , Farmacorresistencia Microbiana/genética , Genes Bacterianos/genética , Integrasas/genética , Aguas Residuales/microbiología , Bacterias/genética
6.
FEMS Microbiol Ecol ; 94(5)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534199

RESUMEN

Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs) that are disseminated into the environment via effluent. However, few studies have compared abundance, mobilization and selective pressures for ARGs in WWTPs as a function of variations in secondary treatment bioprocesses. We used shotgun metagenomics to provide a comprehensive analysis of ARG composition, relationship to mobile genetic elements and co-occurrences with antibiotic production genes (APGs) throughout two full-scale municipal WWTPs, one of which employs biofilm-based secondary treatment and another that uses a suspended growth system. Results showed that abundances of ARGs declined by over 90% per genome equivalent in both types of wastewater treatment processes. However, the fractions of ARGs associated with mobile genetic elements increased substantially between influent and effluent in each plant, indicating significant mobilization of ARGs throughout both treatment processes. Strong positive correlations between ARGs and APGs were found for the aminoglycoside antibiotic class in the suspended growth system and for the streptogramin antibiotic class in the biofilm system. The biofilm and suspended growth WWTPs exhibited similarities in ARG abundances, composition and mobilization trends. However, clear differences were observed for within-plant ARG persistence. These findings suggest that both biofilm and suspended growth-based WWTPs may promote genetic mobilization of persistent ARGs that are then disseminated in effluent to receiving water bodies.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Aguas Residuales/microbiología , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Genes Bacterianos , Metagenómica , Aguas Residuales/análisis
7.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29269503

RESUMEN

Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae, Legionellaceae, Moraxellaceae, and Neisseriaceae, in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies.IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic footprint, including genes specific to antibiotic resistance and mobile genetic elements and their associated organisms, from WWTPs to lake sediments. Our work is novel in that we used metagenomic data sets to comprehensively evaluate total gene content and the genetic and taxonomic context of specific genes in environmental samples putatively impacted by WWTP inputs. Based on two different WWTPs with different treatment processes, our findings point to an influence of WWTPs on the presence, abundance, and composition of these factors in the environment.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Lagos/microbiología , Metagenoma , Microbiota , Aguas Residuales/microbiología , Bacterias/genética , Genes Bacterianos , Wisconsin
8.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28387799

RESUMEN

Biofilms are useful in biotechnology applications such as wastewater treatment, where aggregation of cells on surfaces can increase retention of slow-growing organisms such as ammonia-oxidizing bacteria (AOB). The formation and morphological development of polymicrobial biofilms including AOB are not thoroughly understood. Here, we investigated the formation of Nitrosomonas europaea AOB biofilms in flow cell systems. Nitrosomonas europaea developed substantially greater biovolume in co-culture with heterotrophic Pseudomonas aeruginosa than when cultured alone. In single-species biofilms, N. europaea formed thin, dispersed layers of cells. Contrastingly, when N. europaea was added to flow cells containing pre-established P. aeruginosa biofilms, N. europaea associated closely with P. aeruginosa, resulting in dual-species clusters with greater quantities of N. europaea. These results indicate that P. aeruginosa enhances the formation of N. europaea in biofilms. This favorable association of N. europaea with heterotrophic biofilms is expected to facilitate development of improved strategies for retention of N. europaea and other slow-growing AOB in engineered bioreactors.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Interacciones Microbianas/fisiología , Nitrosomonas europaea/crecimiento & desarrollo , Pseudomonas aeruginosa/crecimiento & desarrollo , Amoníaco/metabolismo , Técnicas de Cocultivo , Oxidación-Reducción , Aguas Residuales/microbiología , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...