Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177514

RESUMEN

Machine vision systems are widely used in assembly lines for providing sensing abilities to robots to allow them to handle dynamic environments. This paper presents a comparison of 3D sensors for evaluating which one is best suited for usage in a machine vision system for robotic fastening operations within an automotive assembly line. The perception system is necessary for taking into account the position uncertainty that arises from the vehicles being transported in an aerial conveyor. Three sensors with different working principles were compared, namely laser triangulation (SICK TriSpector1030), structured light with sequential stripe patterns (Photoneo PhoXi S) and structured light with infrared speckle pattern (Asus Xtion Pro Live). The accuracy of the sensors was measured by computing the root mean square error (RMSE) of the point cloud registrations between their scans and two types of reference point clouds, namely, CAD files and 3D sensor scans. Overall, the RMSE was lower when using sensor scans, with the SICK TriSpector1030 achieving the best results (0.25 mm ± 0.03 mm), the Photoneo PhoXi S having the intermediate performance (0.49 mm ± 0.14 mm) and the Asus Xtion Pro Live obtaining the higher RMSE (1.01 mm ± 0.11 mm). Considering the use case requirements, the final machine vision system relied on the SICK TriSpector1030 sensor and was integrated with a collaborative robot, which was successfully deployed in an vehicle assembly line, achieving 94% success in 53,400 screwing operations.

2.
SN Appl Sci ; 3(3): 354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644692

RESUMEN

The transport of patients from the inpatient service to the operating room is a recurrent task in a hospital routine. This task is repetitive, non-ergonomic, time consuming, and requires the labor of patient transporters. In this paper is presented a system, named Connected Driverless Wheelchair, that can receive transportation requests directly from the hospital information management system, pick up patients at their beds, navigate autonomously through different floors, avoid obstacles, communicate with elevators, and drop patients off at the designated operating room. As a result, a prototype capable of transporting patients autonomously in hospital environments was obtained. Although it was impossible to test the final developed system at the hospital as planned, due to the COVID-19 pandemic, the extensive tests conducted at the robotics laboratory facilities, and our previous experience in integrating mobile robots in hospitals, allowed to conclude that it is perfectly prepared for this integration to be carried out. The achieved results are relevant since this is a system that may be applied to support these types of tasks in the future, making the transport of patients more efficient (both from a cost and time perspective), without unpredictable delays and, in some cases, safer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...