Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 118(12): 4854-4866, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34612511

RESUMEN

Astaxanthin is a high-value compound commercially synthesized through Xanthophyllomyces dendrorhous fermentation. Using mixed sugars decomposed from biowastes for yeast fermentation provides a promising option to improve process sustainability. However, little effort has been made to investigate the effects of multiple sugars on X. dendrorhous biomass growth and astaxanthin production. Furthermore, the construction of a high-fidelity model is challenging due to the system's variability, also known as batch-to-batch variation. Two innovations are proposed in this study to address these challenges. First, a kinetic model was developed to compare process kinetics between the single sugar (glucose) based and the mixed sugar (glucose and sucrose) based fermentation methods. Then, the kinetic model parameters were modeled themselves as Gaussian processes, a probabilistic machine learning technique, to improve the accuracy and robustness of model predictions. We conclude that although the presence of sucrose does not affect the biomass growth kinetics, it introduces a competitive inhibitory mechanism that enhances astaxanthin accumulation by inducing adverse environmental conditions such as osmotic gradients. Moreover, the hybrid model was able to greatly reduce model simulation error and was particularly robust to uncertainty propagation. This study suggests the advantage of mixed sugar-based fermentation and provides a novel approach for bioprocess dynamic modeling.


Asunto(s)
Fermentación/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Biomasa , Reactores Biológicos/microbiología , Glucosa/metabolismo , Cinética , Ingeniería Metabólica , Incertidumbre , Xantófilas/análisis , Xantófilas/metabolismo
2.
Biotechnol Bioeng ; 116(11): 2919-2930, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317536

RESUMEN

Model-based online optimization has not been widely applied to bioprocesses due to the challenges of modeling complex biological behaviors, low-quality industrial measurements, and lack of visualization techniques for ongoing processes. This study proposes an innovative hybrid modeling framework which takes advantages of both physics-based and data-driven modeling for bioprocess online monitoring, prediction, and optimization. The framework initially generates high-quality data by correcting raw process measurements via a physics-based noise filter (a generally available simple kinetic model with high fitting but low predictive performance); then constructs a predictive data-driven model to identify optimal control actions and predict discrete future bioprocess behaviors. Continuous future process trajectories are subsequently visualized by re-fitting the simple kinetic model (soft sensor) using the data-driven model predicted discrete future data points, enabling the accurate monitoring of ongoing processes at any operating time. This framework was tested to maximize fed-batch microalgal lutein production by combining with different online optimization schemes and compared against the conventional open-loop optimization technique. The optimal results using the proposed framework were found to be comparable to the theoretically best production, demonstrating its high predictive and flexible capabilities as well as its potential for industrial application.


Asunto(s)
Biomasa , Reactores Biológicos , Simulación por Computador , Microalgas/crecimiento & desarrollo , Modelos Biológicos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA