Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Bioorg Med Chem Lett ; 109: 129823, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823727

RESUMEN

The tyrosinase (TYR) enzyme catalyses sequential reactions in the melanogenesis pathway: l-tyrosine is oxidised to yield L-3,4-dihydroxyphenylalanine (l-dopa), which in turn is converted to dopaquinone. These two reactions are the first two steps of melanin biosynthesis and are rate limiting. The accumulation or overproduction of melanin may cause skin hyperpigmentation and inhibitors of TYR are thus of interest to the cosmeceutical industry. Several TYR inhibitors are used to treat skin hyperpigmentation, however, some are ineffective and possess questionable safety profiles. This emphasises the need to develop novel TYR inhibitors with better safety and efficacy profiles. The small molecule, 3-hydroxycoumarin, has been reported to be a good potency TYR inhibitor (IC50 = 2.49 µM), and based on this, a series of eight structurally related 3-hydroxyquinolin-2(1H)-one derivatives were synthesised with the aim to discover novel TYR inhibitors. The results showed that four of the derivatives inhibited TYR from the champignon mushroom Agaricus bisporus (abTYR) with IC50 < 6.11 µM. The most potent inhibitor displayed an IC50 value of 2.52 µM. Under the same conditions, the reference inhibitors, thiamidol and kojic acid, inhibited abTYR with IC50 values of 0.130 and 26.4 µM, respectively. Based on the small molecular structures of the active 3-hydroxyquinolin-2(1H)-one inhibitors which are amenable to structure optimisation, it may be concluded that this class of compounds are good leads for the design of TYR inhibitors for cosmeceutical applications.

2.
Antioxidants (Basel) ; 12(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38136164

RESUMEN

Neurodegenerative disorders (NDs) include a large range of diseases characterized by neural dysfunction with a multifactorial etiology. The most common NDs are Alzheimer's disease and Parkinson's disease, in which cholinergic and dopaminergic systems are impaired, respectively. Despite different brain regions being affected, oxidative stress and inflammation were found to be common triggers in the pathogenesis and progression of both diseases. By taking advantage of a multi-target approach, in this work we explored alkyl substituted coumarins as neuroprotective agents, capable to reduce oxidative stress and inflammation by inhibiting enzymes involved in neurodegeneration, among which are Carbonic Anhydrases (CAs), Monoamine Oxidases (MAOs), and Cholinesterases (ChEs). The compounds were synthesized and profiled against the three targeted enzymes. The binding mode of the most promising compounds (7 and 9) within MAO-A and -B was analyzed through molecular modeling studies, providing and explanation for the different selectivities observed for the MAO isoforms. In vitro biological studies using LPS-stimulated rat astrocytes showed that some compounds were able to counteract the oxidative stress-induced neuroinflammation and hamper interleukin-6 secretion, confirming the success of this multitarget approach.

3.
Chem Biol Drug Des ; 102(5): 1067-1074, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37500571

RESUMEN

The small molecule, isatin, is a well-known reversible inhibitor of the monoamine oxidase (MAO) enzymes with IC50 values of 12.3 and 4.86 µM for MAO-A and MAO-B, respectively. While the interaction of isatin with MAO-B has been characterized, only a few studies have explored structure-activity relationships (SARs) of MAO inhibition by isatin analogues. The current study therefore evaluated a series of 14 isatin analogues as in vitro inhibitors of human MAO-A and MAO-B. The results indicated good potency MAO inhibition for some isatin analogues with five compounds exhibiting IC50 < 1 µM. 4-Chloroisatin (1b) and 5-bromoisatin (1f) were the most potent inhibitors with IC50 values of 0.812 and 0.125 µM for MAO-A and MAO-B, respectively. These compounds were also found to be competitive inhibitors of MAO-A and MAO-B with Ki values of 0.311 and 0.033 µM, respectively. Among the SARs, it was interesting to note that C5-substitution was particularly beneficial for MAO-B inhibition. MAO inhibitors are established drugs for the treatment of neuropsychiatric and neurodegenerative disorders, while potential new roles in prostate cancer and cardiovascular disease are being investigated.

4.
Mol Divers ; 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36934384

RESUMEN

Monoamine oxidase (MAO) are flavoenzymes that metabolize neurotransmitter, dietary and xenobiotic amines to their corresponding aldehydes with the production of hydrogen peroxide. Two isoforms, MAO-A and MAO-B, are expressed in humans and mammals, and display different substrate and inhibitor specificities as well as different physiological roles. MAO inhibitors are of much therapeutic value and are used for the treatment of neuropsychiatric and neurodegenerative disorders such as depression, anxiety disorders, and Parkinson's disease. To discover MAO inhibitors with good potencies and interesting isoform specificities, the present study synthesized a series of 2,1-benzisoxazole (anthranil) derivatives and evaluated them as in vitro inhibitors of human MAO. The compounds were in most instances specific inhibitors of MAO-B with the most potent MAO-B inhibition observed for 7a (IC50 = 0.017 µM) and 7b (IC50 = 0.098 µM). The most potent MAO-A inhibition was observed for 3l (IC50 = 5.35 µM) and 5 (IC50 = 3.29 µM). It is interesting to note that 3-(2-aminoethoxy)-1,2-benzisoxazole derivatives, the 1,2-benzisoxazole, zonisamide, as well as the isoxazole compound, leflunomide, have been described as MAO inhibitors. This is however the first report of MAO inhibition by derivatives of the 2,1-benzisoxazole structural isomer.

5.
Arch Pharm (Weinheim) ; 356(3): e2200409, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36446720

RESUMEN

Herein we report the synthesis of 21 novel small molecules inspired by metronidazole and Schiff base compounds. The compounds were evaluated against Trichomonas vaginalis and cross-screened against other pathogenic protozoans of clinical relevance. Most of these compounds were potent against T. vaginalis, exhibiting IC50 values < 5 µM. Compound 20, the most active compound against T. vaginalis, exhibited an IC50 value of 3.4 µM. A few compounds also exhibited activity against Plasmodium falciparum and Trypanosomal brucei brucei, with compound 6 exhibiting an IC50 value of 0.7 µM against P. falciparum and compound 22 exhibiting an IC50 value of 1.4 µM against T.b. brucei. Compound 22 is a broad-spectrum antiprotozoal agent, showing activities against all three pathogenic protozoans under investigation.


Asunto(s)
Antiprotozoarios , Malaria Falciparum , Trichomonas vaginalis , Humanos , Metronidazol/farmacología , Bases de Schiff/farmacología , Relación Estructura-Actividad , Antiprotozoarios/farmacología
6.
Front Pharmacol ; 14: 1308400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259296

RESUMEN

Efforts to develop new artemisinin triple combination therapies effective against artemisinin-tolerant strains of Plasmodium falciparum based on rational combinations comprising artemisone or other amino-artemisinins, a redox active drug and a third drug with a different mode of action have now been extended to evaluation of three potential redox partners. These are the diethyl analogue AD01 of methylene blue (MB), the benzo [α]phenoxazine PhX6, and the thiosemicarbazone DpNEt. IC50 values in vitro against CQ-sensitive and resistant P. falciparum strains ranged from 11.9 nM for AD01-41.8 nM for PhX6. PhX6 possessed the most favourable pharmacokinetic (PK) profile: intrinsic clearance rate CLint was 21.47 ± 1.76 mL/min/kg, bioavailability was 60% and half-life was 7.96 h. AD01 presented weaker, but manageable pharmacokinetic properties with a rapid CLint of 74.41 ± 6.68 mL/min/kg leading to a half-life of 2.51 ± 0.07 h and bioavailability of 15%. DpNEt exhibited a half-life of 1.12 h and bioavailability of 8%, data which discourage its further examination, despite a low CLint of 10.20 mL/min/kg and a high Cmax of 6.32 µM. Efficacies of AD01 and PhX6 were enhanced synergistically when each was paired with artemisone against asexual blood stages of P. falciparum NF54 in vitro. The favourable pharmacokinetics of PhX6 indicate this is the best partner among the compounds examined thus far for artemisone. Future work will focus on extending the drug combination studies to artemiside in vitro, and conducting efficacy studies in vivo for artemisone with each of PhX6 and the related benzo[α]phenoxazine SSJ-183.

7.
Molecules ; 27(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36431918

RESUMEN

Neurodegenerative diseases (NDs) are described as multifactorial and progressive syndromes with compromised cognitive and behavioral functions. The multi-target-directed ligand (MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV) analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1−9 were tested as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM) with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM). It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for RSV). To evaluate the plausible binding mode of 1−9 within the two enzymes, molecular docking and dynamics studies were performed, revealing specific and significant interactions in the active sites of both targets. The new compounds are of pharmacological interest in view of their considerably reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO and CA inhibitors with therapeutic potential in neuroprotection.


Asunto(s)
Anhidrasas Carbónicas , Enfermedades Neurodegenerativas , Humanos , Inhibidores de la Monoaminooxidasa/química , Resveratrol/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Monoaminooxidasa/metabolismo , Anhidrasas Carbónicas/metabolismo
8.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431985

RESUMEN

The involvement of human carbonic anhydrase (hCA) IX/XII in the pathogenesis and progression of many types of cancer is well acknowledged, and more recently human monoamine oxidases (hMAOs) A and B have been found important contributors to tumor development and aggressiveness. With a view of an enzymatic dual-blockade approach, in this investigation, new coumarin-based amino acyl and (pseudo)-dipeptidyl derivatives were synthesized and firstly evaluated in vitro for inhibitory activity and selectivity against membrane-bound and cytosolic hCAs (hCA IX/XII over hCA I/II), as well as the hMAOs, to estimate their potential as anticancer agents. De novo design of peptide-coumarin conjugates was subsequently carried out and involved the combination of the widely explored coumarin nucleus with the unique biophysical and structural properties of native or modified peptides. All compounds displayed nanomolar inhibitory activities towards membrane-anchored hCAs, whilst they were unable to block the ubiquitous CA I and II isoforms. Structural features pertinent to potent and selective CA inhibitory activity are discussed, and modeling studies were found to support the biological data. Lower potency inhibition of the hMAOs was observed, with most compounds showing preferential inhibition of hMAO-A. The binding of the most potent ligands (6 and 16) to the hydrophobic active site of hMAO-A was investigated in an attempt to explain selectivity on the molecular level. Calculated Ligand Efficiency values indicate that compound 6 has the potential to serve as a lead compound for developing innovative anticancer agents based on the dual inhibition strategy. This information may help design new coumarin-based peptide molecules with diverse bioactivities.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad , Anhidrasas Carbónicas/química , Cumarinas/farmacología , Cumarinas/química , Anhidrasa Carbónica II/metabolismo
9.
Eur J Med Chem ; 244: 114828, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36244185

RESUMEN

Cognitive deficits are enduring and disabling symptoms for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. In this study, we reported the synthesis of ß-arylchalcogeno amines bearing sulfurated, selenated, and tellurated moieties (2-4) which are structurally related to amphetamine with good activation properties for Carbonic Anhydrases (CAs) isoforms present in the cortical and hippocampal brain structures (hCA IV and hCA XIV). In addition, these compounds showed selective inhibition against the Monoamine oxidase (MAO) A isoform. In vivo evaluation of two derivatives (2a and 3a) revealed procognitive effects in the object recognition and social discrimination tests. Interestingly, these compounds, despite having a similar structure to amphetamine, did not caused hypophagia or hyperlocomotion, two effects often observed following the administration of amphetamine-like drugs. In this context, ß-arylchalcogeno amines may have utility for improving the symptoms of cognitive decline associated with neurodegenerative and psychiatric diseases such as attention deficit disorder, Parkinson's disease-related cognitive dysfunction and cognitive disorders associated with depression.


Asunto(s)
Anhidrasas Carbónicas , Humanos , Anhidrasas Carbónicas/metabolismo , Aminas/farmacología , Monoaminooxidasa , Isoformas de Proteínas , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Anhidrasa Carbónica IX/metabolismo
10.
Bioorg Med Chem Lett ; 77: 129038, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36307034

RESUMEN

Monoamine oxidase (MAO) plays an important role in psychiatric and neurological disorders, such as depression and Parkinson's disease. As a result, MAO represents a key target for developing drugs to treat these conditions. The present study aimed to synthesise and discover compounds that inhibit the MAO enzymes and which may be relevant to the treatment of neurological disorders. A series of nine 2H-1,4-benzothiazin-3(4H)-ones were synthesised and evaluated as potential in vitro inhibitors of human MAO-A and MAO-B. The benzothiazinones bear structural similarity to a series of 3,4-dihydro-2(1H)-quinolinones that have been shown to be highly potent MAO-B inhibitors. The results show that the benzothiazinones inhibit both MAO isoforms but are more potent MAO-B inhibitors. The most potent inhibitors exhibit IC50 values of 0.0027 (1b), 0.0082 (1c), 0.0096 (1d), and 0.0041 µM (1h) for MAO-B, and 0.714 µM (1d) for MAO-A. These benzothiazinone derivatives exhibit promising MAO inhibition activities and may be developed into clinically useful agents for the treatment of Parkinson's disease. Interestingly, related 4H-3,1-benzothiazin-4-ones have previously been investigated as dual-target-directed drugs that inhibit MAO-B and antagonize adenosine A2A receptors for the treatment of Parkinson's disease. Based on an interest in d-amino acid oxidase (DAAO) as a target for the treatment for schizophrenia, the 2H-1,4-benzothiazin-3(4H)-ones were also evaluated as in vitro inhibitors of this enzyme. Among the study compounds, only 7-hydroxy-2H-1,4-benzothiazin-3(4H)-one (IC50 = 4.20 µM) was an active DAAO inhibitor. Finally, molecular docking was employed to gain insight into the binding modes and interactions of the 2H-1,4-benzothiazin-3(4H)-ones with MAO.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Enfermedad de Parkinson , Humanos , Inhibidores de la Monoaminooxidasa/química , Enfermedad de Parkinson/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Monoaminooxidasa/metabolismo
11.
Bioorg Med Chem ; 73: 117030, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36179486

RESUMEN

The monoamine oxidase (MAO) enzymes metabolise neurotransmitter amines in the central and peripheral tissues, and thereby contribute to the regulation of neurotransmission. Inhibitors of MAO modulate the levels of neurotransmitters in the central nervous system, and have been used for several decades for the treatment of depression and Parkinson's disease, while potential new therapeutic applications in other diseases such as prostate cancer and heart failure may exist. In the interest of discovering new classes of chemical compounds that potently inhibit the MAOs, the present study synthesises a series of ten isatoic anhydrides and evaluates their potential as in vitro inhibitors of human MAO-A and MAO-B. The isatoic anhydrides bear structural similarity to a series of 3,4-dihydro-2(1H)-quinolinones as well as to series of isatins and phthalimides that have been reported to act as potent MAO-B inhibitors. The results document that the isatoic anhydrides inhibit both MAO isoforms with the most potent inhibitors exhibiting IC50 values of 0.010 µM (1b and 1h) and 0.0047 µM (1j) for MAO-A and MAO-B, respectively. Molecular docking suggests that isatoic anhydrides exhibit similar binding modes and interactions with MAO-A and MAO-B, which may explain their potent inhibition of both isoforms. It may be concluded that the isatoic anhydrides represent a new class of MAO inhibitors, while it is interesting to note that very few studies on the pharmacological actions of isatoic anhydrides have been reported. As a secondary aim, the isatoic anhydrides were also evaluated as potential inhibitors of d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).


Asunto(s)
Inhibidores de la Monoaminooxidasa , Quinolonas , Acetilcolinesterasa/metabolismo , Aminas , Aminoácidos , Anhídridos , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Humanos , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Ftalimidas , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad
12.
Expert Opin Ther Pat ; 32(8): 849-883, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35638744

RESUMEN

INTRODUCTION: Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood, and cognitive activity, and monoamine catabolism. AREAS COVERED: MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION: MAO inhibitors here reported exhibit different potencies and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Patentes como Asunto , Antidepresivos/farmacología , Humanos , Inflamación/tratamiento farmacológico , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Relación Estructura-Actividad
13.
Bioorg Med Chem Lett ; 67: 128746, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447344

RESUMEN

Monoamine oxidase B (MAO-B) inhibitors are established therapy for Parkinson's disease and act, in part, by blocking the MAO-catalysed metabolism of dopamine in the brain. Two propargylamine-containing MAO-B inhibitors, selegiline [(R)-deprenyl] and rasagiline, are currently used in the clinic for this purpose. These compounds are mechanism-based inactivators and, after oxidative activation, form covalent adducts with the FAD co-factor. An important consideration is that selegiline and rasagiline display specificity for MAO-B over the MAO-A isoform thus reducing the risk of tyramine-induced changes in blood-pressure. In the interest of discovering new propargylamine MAO inhibitors, the present study synthesises racemic N-propargylamine-2-aminotetralin (2-PAT), a compound that may be considered as both a six-membered ring analogue of rasagiline and a semi-rigid N-desmethyl ring-closed analogue of selegiline. The in vitro human MAO inhibition properties of this compound were measured and the results showed that 2-PAT is a 20-fold more potent inhibitor of MAO-A (IC50 = 0.721 µM) compared to MAO-B (IC50 = 14.6 µM). Interestingly, dialysis studies found that 2-PAT is a reversible MAO-A inhibitor, while acting as an inactivator of MAO-B. Since reversible MAO-A inhibitors are much less liable to potentiate tyramine-induced side effects than MAO-A inactivators, it is reasonable to suggest that 2-PAT could be a useful and safe therapeutic agent for disorders such as Parkinson's disease and depression.


Asunto(s)
Enfermedad de Parkinson , Selegilina , Humanos , Indanos/farmacología , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Pargilina/análogos & derivados , Enfermedad de Parkinson/tratamiento farmacológico , Propilaminas , Selegilina/farmacología , Tetrahidronaftalenos , Tiramina/farmacología
14.
Bioorg Chem ; 123: 105791, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413582

RESUMEN

d-Amino acid oxidase (DAAO) oxidises d-amino acids to ultimately produce the corresponding α-keto acids. The DAAO substrate, d-serine, is a co-agonist at NMDA receptors, while NMDA receptor hypo-function has been implicated in the pathophysiology of schizophrenia. Through the modulation of d-serine levels, the inhibition of DAAO represents a strategy to increase NMDA receptor function, and thus a potential treatment for schizophrenia. Literature reports that 3-hydroxycoumarin is a potent inhibitor of DAAO and represents an ideal lead for the development of novel DAAO inhibitors. Based on this, the present study investigated DAAO inhibition by a series of synthetic and commercially available coumarin derivatives. Due to structural similarity to coumarin, a synthetic series of 3,4-dihydroisoquinolin-1(2H)-one derivatives has also been included in this study. The results show that among 37 compound evaluated, four inhibit porcine kidney DAAO with IC50 < 10 µM. The most potent inhibitors are 3,7-dihydroxycoumarin and 6,7-dihydroxycoumarin with an IC50 values of 0.167 and 0.224 µM, respectively. These values are an improvement on that of the reference DAAO inhibitor, 3-methylpyrazole-5-carboxylic acid (IC50 = 1.88 µM). Coumarin compounds are also known to inhibit the monoamine oxidase (MAO) enzymes, which are well established targets for the treatment of depression and Parkinson's disease. As DAAO and MAO are flavoenzymes, off-target inhibition may occur. The series were thus evaluated as potential MAO inhibitors, and a number of high potency inhibitors were identified. Seven compounds inhibit the recombinant human MAOs with IC50 < 0.1 µM, with the most potent MAO-A and MAO-B inhibitors exhibiting IC50 values of 0.033 and 0.012 µM, respectively. This is significantly more potent than the reference inhibitors, curcumin, isatin and toloxatone. This study concludes that active DAAO and MAO inhibitors may serve as novel leads for the design of compounds that may find future application in the treatment of neuropsychiatric (e.g. schizophrenia, depression) and neurodegenerative disorders (e.g. Parkinson's disease).


Asunto(s)
Monoaminooxidasa , Enfermedad de Parkinson , Aminoácidos , Animales , Cumarinas/farmacología , Relación Dosis-Respuesta a Droga , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Receptores de N-Metil-D-Aspartato , Serina , Relación Estructura-Actividad , Porcinos
15.
Bioorg Med Chem ; 54: 116558, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34915314

RESUMEN

Inhibitors of the monoamine oxidase (MAO) enzymes are important agents for the treatment of central nervous system disorders and have established roles in the therapy of neuropsychiatric diseases such as depression and in the neurodegenerative disorder, Parkinson's disease. A number of good potency MAO inhibitors consist of tricyclic ring systems as exemplified by the structures of harmine and the phenothiazine compound methylene blue. In an attempt to discover novel MAO inhibitors, 30 phenothiazine, anthraquinone and related tricyclic derivatives were selected and evaluated as potential inhibitors of human MAO-A and MAO-B. The results show that, in general, the tricyclic compounds are specific inhibitors of MAO-A over the MAO-B isoform. Quinizarin (IC50 = 0.065 µM), 2-chloro-7-methoxy-10H-phenothiazine (IC50 = 0.576 µM) and xanthone (IC50 = 0.623 µM) proved to be the most potent MAO-A inhibitors, while the most potent MAO-B inhibition was recorded with 2-chloro-7-methoxy-10H-phenothiazine (IC50 = 1.34 µM), 1,2-diaminoanthraquinone (IC50 = 2.41 µM) and emodin (IC50 = 3.24 µM). These compounds may undergo further preclinical evaluation and development, and may also serve as potential lead compounds for the future design of MAO inhibitors.


Asunto(s)
Antraquinonas/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Fenotiazinas/farmacología , Antraquinonas/síntesis química , Antraquinonas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Fenotiazinas/síntesis química , Fenotiazinas/química , Relación Estructura-Actividad
16.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361750

RESUMEN

The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from Acacia auriculiformis stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases. Betulin was shown to inhibit Abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase, casein kinase 1ε (CK1ε), glycogen synthase kinase 3α/ß (GSK-3 α/ß), Janus kinase 3 (JAK3), NIMA Related Kinase 6 (NEK6), and vascular endothelial growth factor receptor 2 kinase (VEGFR2) with activities in the micromolar range for each. The effect of betulin on the cell viability of doxorubicin-resistant K562R chronic myelogenous leukemia cells was then verified to investigate its putative use as an anti-cancer compound. Betulin was shown to modulate the mitogen-activated protein (MAP) kinase pathway, with activity similar to that of imatinib mesylate, a known ABL1 kinase inhibitor. The interaction of betulin and ABL1 was studied by molecular docking, revealing an interaction of the inhibitor with the ABL1 ATP binding pocket. Together, these data demonstrate that betulin is a multi-target inhibitor of protein kinases, an activity that can contribute to the anticancer properties of the natural compound and to potential treatments for leukemia.


Asunto(s)
Acacia/química , Antineoplásicos Fitogénicos/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Triterpenos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sitios de Unión , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Caseína Cinasa 1 épsilon/genética , Caseína Cinasa 1 épsilon/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Janus Quinasa 3/antagonistas & inhibidores , Janus Quinasa 3/genética , Janus Quinasa 3/metabolismo , Células K562 , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Moleculares , Quinasas Relacionadas con NIMA/antagonistas & inhibidores , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Corteza de la Planta/química , Extractos Vegetales/química , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal , Triterpenos/química , Triterpenos/aislamiento & purificación , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Bioorg Chem ; 114: 105130, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34225162

RESUMEN

The enzymes, catechol O-methyltransferase (COMT) and monoamine oxidase (MAO) are important drug targets, and inhibitors of these enzymes are established therapy for symptomatic Parkinson's disease (PD). COMT inhibitors enhance the bioavailability of levodopa to the brain, and therefore are combined with levodopa for the treatment of motor fluctuations in PD. Inhibitors of the MAO-B isoform, in turn, are used as monotherapy or in conjunction with levodopa in PD, and function by reducing the central degradation of dopamine. It has been reported that 1-tetralone and 1-indanone derivatives are potent and specific inhibitors of MAO-B, while compounds containing the nitrocatechol moiety (e.g. tolcapone and entacapone) are often potent COMT inhibitors. The present study attempted to discover compounds that exhibit dual COMT and MAO-B inhibition by synthesizing series of 1-tetralone, 1-indanone and related derivatives substituted with the nitrocatechol moiety. These compounds are structurally related to series of nitrocatechol derivatives of chalcone that have recently been investigated as potential dual COMT/MAO inhibitors. The results show that 4-chromanone derivative (7) is the most promising dual inhibitor with IC50 values of 0.57 and 7.26 µM for COMT and MAO-B, respectively, followed by 1-tetralone derivative (4d) with IC50 values of 0.42 and 7.83 µM for COMT and MAO-B, respectively. Based on their potent inhibition of COMT, it may be concluded that nitrocatechol compounds investigated in this study are appropriate for peripheral COMT inhibition, which represents an important strategy in the treatment of PD.


Asunto(s)
Inhibidores de Catecol O-Metiltransferasa/farmacología , Catecoles/farmacología , Indanos/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Nitrocompuestos/farmacología , Tetralonas/farmacología , Catecol O-Metiltransferasa/metabolismo , Inhibidores de Catecol O-Metiltransferasa/síntesis química , Inhibidores de Catecol O-Metiltransferasa/química , Catecoles/química , Relación Dosis-Respuesta a Droga , Humanos , Indanos/síntesis química , Indanos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Nitrocompuestos/química , Relación Estructura-Actividad , Tetralonas/síntesis química , Tetralonas/química
18.
Bioorg Chem ; 108: 104563, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33376014

RESUMEN

The monoamine oxidase (MAO) enzymes are key metabolic enzymes of neurotransmitter and other bioactive amines, and represent important drug targets for the treatment of neuropsychiatric and neurodegenerative disorders. Inhibitors of MAO are established medications for the treatment of depression and Parkinson's disease, and may have future roles in other disease states such as the therapy of prostate cancer, cardiovascular disease and inflammatory diseases. Based on these considerations, the present study synthesizes a series of 22 pyrazolo[1,5-a]quinoxalin-4-one derivatives and evaluated them as potential inhibitors of human MAO-A and MAO-B. The results show that 8 derivatives inhibit MAO-A, and 3 derivatives inhibit MAO-B with IC50 values in the submicromolar range (<1 µM). The most potent MAO-A inhibitor, N-[5-(acetyloxy)-2-(4-chlorophenyl)-4-oxo-4,5-dihydropyrazolo[1,5-a]quinoxalin-7-yl]acetamide (7c), exhibit an IC50 value of 0.028 µM and displays 50-fold selectivity for MAO-A over MAO-B. The most potent MAO-B inhibitor, 2-(4-methylphenyl)-4-oxo-4,5-dihydropyrazolo[1,5-a]quinoxaline-7-carbonitrile (4f), exhibit an IC50 value of 0.617 µM and displays 8-fold selectivity for MAO-B. This is the first report of MAO inhibition by pyrazolo[1,5-a]quinoxalin-4-one derivatives, and this study concludes that these compounds are suitable leads for the future development of MAO inhibitors, particularly of the MAO-A isoform.


Asunto(s)
Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Quinoxalinas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Quinoxalinas/síntesis química , Quinoxalinas/química , Relación Estructura-Actividad
19.
Mol Divers ; 25(2): 753-762, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32108308

RESUMEN

The most effective treatment of Parkinson's disease is restoring central dopamine levels with levodopa, the metabolic precursor of dopamine. However, due to extensive peripheral metabolism by aromatic L-amino acid decarboxylase and catechol-O-methyltransferase (COMT), only a fraction of the levodopa dose reaches the brain unchanged. Thus, by preventing levodopa metabolism and increasing the availability of levodopa for uptake into the brain, the inhibition of COMT would be beneficial in Parkinson's disease. Although nitrocatechol COMT inhibitors have been used in the treatment of Parkinson's disease, efforts have been made to discover non-nitrocatechol inhibitors. In the present study, the 3-hydroxypyridin-4-one scaffold was selected for the design and synthesis of non-nitrocatechol COMT inhibitors since the COMT inhibitory potential of this class has been illustrated. Using COMT obtained from porcine liver, it was shown that a synthetic series of ten 3-hydroxypyridin-4-ones are in vitro inhibitors with IC50 values ranging from 4.55 to 19.8 µM. Although these compounds are not highly potent inhibitors, they may act as leads for the development of non-nitrocatechol COMT inhibitors. Such compounds would be appropriate for the treatment of Parkinson's disease. 3-Hydroxypyridin-4-ones have been synthesised and evaluated as non-nitrocatechol COMT inhibitors. In vitro, the IC50 values ranged from 4.55 to 19.8 µM.


Asunto(s)
Inhibidores de Catecol O-Metiltransferasa , Piridinas , Animales , Catecol O-Metiltransferasa/química , Inhibidores de Catecol O-Metiltransferasa/síntesis química , Inhibidores de Catecol O-Metiltransferasa/química , Diseño de Fármacos , Hígado/enzimología , Modelos Moleculares , Piridinas/síntesis química , Piridinas/química , Porcinos
20.
Eur J Pharm Sci ; 157: 105603, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091571

RESUMEN

It has been shown that methylene blue has antimicrobial properties although few studies have determined its minimum inhibitory concentration (MIC), which is the gold standard used to measure antimicrobial activity. The exact antimicrobial mode of action of methylene blue is still unclear and to our knowledge no pharmacophore model has yet been created to investigate methylene blue's mode of action. The aim of this study was to determine the MIC of methylene blue and a number of its analogous against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica and Candida albicans, and to use these data to develop and validate a common feature pharmacophore model. Three statistical metrics, i.e. the enrichment factor (EF), hit rate (HR) and the area under the curve of a receiver operator characteristic (ROC-AUC), were used to determine the pharmacophore model's ability to differentiate between active/decoy compounds. The validated pharmacophore model was used to map similar antibacterial compounds in an attempt to elucidate methylene blue's antimicrobial mode of action. Most test compounds only had activity against S. aureus, S. epidermidis and K. pneumoniae. Dimethyl methylene blue, new methylene blue and acriflavine proved to be the most active compounds against S. aureus [1 µg/ml (dimethyl methylene blue); 4 µg/ml (new methylene blue); 8 µg/ml (acriflavine)], S. epidermidis [1 µg/ml (dimethyl methylene blue); 4 µg/ml (new methylene blue); 2 µg/ml (acriflavine)] and K. pneumoniae [8 µg/ml (dimethyl methylene blue); 0.5 µg/ml (new methylene blue); 2 µg/ml (acriflavine)]. A common feature pharmacophore model was created (rank score: 26.664, max. fit value: 4), which was able to accurately identify active methylene blue analogous out of the test set (EF2%: 51, HR2%: 100%, ROC-AUC: 1.00 ± 0.00). Six phenothiazine derivatives with known antibacterial activity had high fit values when mapped with the validated pharmacophore model, i.e. >3.4. Dimethyl methylene blue, new methylene blue and acriflavine had potent antibacterial activity against S. aureus, S. epidermidis and K. pneumoniae. The MIC data will allow other researchers to compare the activity across different laboratories. The common feature pharmacophore model was able to identify methylene blue analogous with known in vitro antibacterial activity out of a database containing active/decoy compounds and highlighted the importance of two hydrophobic features, an aromatic feature and a hydrogen bond acceptor. The validated pharmacophore model also correctly mapped six phenothiazine derivatives with known antibacterial activity suggesting that they may share a common antibacterial mechanism of action.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Simulación por Computador , Azul de Metileno/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...