Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 337: 122164, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710558

RESUMEN

Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.


Asunto(s)
Glucanos , Glicosiltransferasas , Agua , Glucanos/química , Agua/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Streptococcus/enzimología , Solubilidad , Streptococcus mutans/enzimología
2.
Proc Natl Acad Sci U S A ; 120(27): e2217363120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37379326

RESUMEN

Crystallization of polymers from entangled melts generally leads to the formation of semicrystalline materials with a nanoscopic morphology consisting of stacks of alternating crystalline and amorphous layers. The factors controlling the thickness of the crystalline layers are well studied; however, there is no quantitative understanding of the thickness of the amorphous layers. We elucidate the effect of entanglements on the semicrystalline morphology by the use of a series of model blends of high-molecular-weight polymers with unentangled oligomers leading to a reduced entanglement density in the melt as characterized by rheological measurements. Small-angle X-ray scattering experiments after isothermal crystallization reveal a reduced thickness of the amorphous layers, while the crystal thickness remains largely unaffected. We introduce a simple, yet quantitative model without adjustable parameters, according to which the measured thickness of the amorphous layers adjusts itself in such a way that the entanglement concentration reaches a specific maximum value. Furthermore, our model suggests an explanation for the large supercooling that is typically required for crystallization of polymers if entanglements cannot be dissolved during crystallization.

3.
J Mech Behav Biomed Mater ; 137: 105546, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375274

RESUMEN

Young's modulus of α'- and α-crystals of poly (l-lactic acid) (PLLA), more precisely, of aggregates of isotropically arranged lamellae, has been estimated based on dynamic-mechanical analysis of sets of isotropic film samples containing largely different though well-defined amounts of crystals. Evaluation of the modulus of elasticity of these film samples yielded the dependence of Young's modulus as a function of the enthalpy-based crystallinity, increasing with the crystal fraction in the assessed range, from zero to about 75% crystallinity. Extrapolation towards 100% crystallinity suggests values of Young's modulus of around 3.7 and 4.6 GPa for isotropic aggregates of α'- and α-crystals, respectively, being only slightly higher than the modulus of the unaged glassy amorphous phase of 3.0 GPa. Noting the inherent anisotropy of the crystal modulus, suggested in the literature, the average modulus determined in this work seems to be controlled by weaker interchain secondary bonding but not the modulus in chain direction. Great effort has been undertaken to minimize errors by keeping the lamellar thickness in samples of different crystallinity constant, and by providing evidence for independence of the moduli on the spherulitic superstructure.


Asunto(s)
Ácido Láctico , Módulo de Elasticidad , Elasticidad , Anisotropía , Termodinámica , Ácido Láctico/química
4.
Pharmaceutics ; 14(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365199

RESUMEN

The insect repellent ethyl butylacetylaminopropionate (IR3535) was used as a functional additive for poly (l-lactic acid) (PLLA) to modify its structure and mechanical properties and achieve insect repellency. PLLA/IR3535 mixtures at various compositions were prepared via melt extrusion. In the analyzed composition range of 0 to 23 m% IR3535, PLLA and IR3535 were miscible at the length scale represented by the glass transition temperature. Addition of IR3535 resulted in a significant decrease in the glass transition temperature of PLLA, as well as in the elastic modulus, indicating its efficiency as a plasticizer. All mixtures were amorphous after extrusion, though PLLA/IR3535 extrudates with an IR3535 content between 18 and 23 m% crystallized during long-term storage at ambient temperature, due to their low glass transition temperature. Quantification of the release of IR3535 into the environment by thermogravimetric analysis at different temperatures between 50 and 100 °C allowed the estimation of the evaporation rate at lower temperatures, suggesting an extremely low release rate with a time constant of the order of magnitude of 1-2 years at body temperature.

5.
Int J Pharm ; 624: 122023, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35843363

RESUMEN

The polymer/solvent system poly(l-lactic acid)/ethyl butylacetylaminopropionate (PLLA/IR3535) is regarded as an insect-repellent-delivery system, serving, e.g., for fighting mosquito-borne tropical diseases. In such systems the solid polymer hosts the liquid repellent, with the latter slowly released to the environment, expelling mosquitoes. As a new approach, exceeding prior work about application of different technologies to obtain such devices, in this work, samples of the polymer/repellent system PLLA/IR3535 were prepared by 3D-printing. The experiments showed that it is possible to print 3D-parts containing up to 25 m% repellent, with an only minor loss of repellent during the printing process. For samples containing low amount of repellent, crystallization of PLLA was suppressed due to the rather fast cooling step and the low bed temperature of around 25 °C, being lower than the glass transition temperature of the homogeneous polymer/repellent strands. At higher repellent concentration, due to the lowering of the glass transition temperature to near or even below ambient temperature, the crystallinity slowly increased during storage after printing. For all samples, regardless of the initial repellent concentration, the repellent-release rate increases with temperature, and at ambient temperature the release-time constant is in the order of 10 days. The study successfully proved the applicability of the technology of extrusion-based 3D-printing for the preparation of polymer parts with a specific shape/design containing mosquito-repellent at a concentration which raises the expectation to be used as a repellent delivery-device.


Asunto(s)
Repelentes de Insectos/administración & dosificación , Repelentes de Insectos/química , Impresión Tridimensional , Enfermedades Transmitidas por Vectores/prevención & control , Animales , Insectos , Poliésteres , Polímeros/química , Propionatos/química , Clima Tropical
6.
Sci Adv ; 7(18)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33910908

RESUMEN

Self-healing or healable polymers can recuperate their function after physical damage. This process involves diffusion of macromolecules across severed interfaces until the structure of the interphase matches that of the pristine material. However, monitoring this nanoscale process and relating it to the mechanical recovery remain elusive. We report that studying diffusion across healed interfaces and a correlation of contact time, diffusion depth, and mechanical properties is possible when two metallosupramolecular polymers assembled with different lanthanoid salts are mended. The materials used display similar properties, while the metal ions can be tracked with high spatial resolution by energy-dispersive x-ray spectrum imaging. We find that healing actual defects requires an interphase thickness in excess of 100 nm, 10 times more than previously established for self-adhesion of smooth films of glassy polymers.

7.
Langmuir ; 32(11): 2780-6, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26915534

RESUMEN

The analysis of sulfur distribution in porous carbon/sulfur nanocomposites using small-angle X-ray scattering (SAXS) is presented. Ordered porous CMK-8 carbon was used as the host matrix and gradually filled with sulfur (20-50 wt %) via melt impregnation. Owing to the almost complete match between the electron densities of carbon and sulfur, the porous nanocomposites present in essence a two-phase system and the filling of the host material can be precisely followed by this method. The absolute scattering intensities normalized per unit of mass were corrected accounting for the scattering contribution of the turbostratic microstructure of carbon and amorphous sulfur. The analysis using the Porod parameter and the chord-length distribution (CLD) approach determined the specific surface areas and filling mechanism of the nanocomposite materials, respectively. Thus, SAXS provides comprehensive characterization of the sulfur distribution in porous carbon and valuable information for a deeper understanding of cathode materials of lithium-sulfur batteries.

8.
Angew Chem Int Ed Engl ; 52(23): 6088-91, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23620268

RESUMEN

Kitset hollow spheres: The combination of twin polymerization with hard templates makes hollow carbon spheres (HCSs) with tailored properties easily accessible. The thickness and pore texture of the HCS shells and also the diameter of the spherical cavity can be varied. The application potential of synthesized HCS is substantiated by an excellent cycling stability of lithium-sulfur batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...