Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(5): 1392-1408, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38419873

RESUMEN

This research article focuses on the targeted color design of silver-gold alloy nanoparticles (NPs), employing a multivariate optimization approach. NP synthesis involves interconnected process parameters, making independent variation challenging. Data-based property-process relationships are established to optimize optical properties effectively. We define a color target, employ a green chemical co-reduction method at room temperature and optimize process parameters accordingly. The CIEL*a*b* color space (Commission Internationale de l'Éclairage - International Commission on Illumination) and Euclidean distances facilitate accurate color matching to establish the property-process relationship. Concurrently, theoretical Mie calculations explore the structure-property relationship across particle sizes, concentrations, and molar gold contents. The theoretically optimal structure agrees very well with experimental particle structures at the property-process relationship's optimum. The data-driven property-process relationship provides valuable insights into the formation mechanism of a complex particle system, sheds light on the role of relevant process parameters and allows to evaluate the practically available property space. Model validation beyond the original grid demonstrates its robustness, yielding colors close to the target. Additionally, Design of Experiments (DoE) methods reduce experimental work by threefold with slight accuracy trade-offs. Our novel methodology for targeted color design demonstrates how data-based methods can be utilized alongside structure-property relationships to unravel property-process relationships in the design of complex nanoparticle systems and paves the way for future developments in targeted property design.

2.
Nanoscale Adv ; 5(5): 1450-1464, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36866254

RESUMEN

Metallic alloy nanoparticles (NPs) exhibit interesting optical, electrical and catalytic properties, dependent on their size, shape and composition. In particular, silver-gold alloy NPs are widely applied as model systems to better understand the syntheses and formation (kinetics) of alloy NPs, as the two elements are fully miscible. Our study targets product design via environmentally friendly synthesis conditions. We use dextran as the reducing and stabilizing agent for the synthesis of homogeneous silver-gold alloy NPs at room temperature. Our approach is a one-pot, low temperature, reaction-controlled, green and scalable synthesis route of well-controlled composition and narrow particle size distribution. The composition over a broad range of molar gold contents is confirmed by scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (STEM-EDX) measurements and auxiliary inductively coupled plasma-optical emission spectroscopy measurements (ICP-OES). The distributions of the resulting particles in size and composition are obtained from multi-wavelength analytical ultracentrifugation using the optical back coupling method and further confirmed by high-pressure liquid chromatography. Finally, we provide insight into the reaction kinetics during the synthesis, discuss the reaction mechanism and demonstrate possibilities for scale-up by a factor of more than 250 by increasing the reactor volume and NP concentration.

3.
Soft Matter ; 18(35): 6739-6756, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36040122

RESUMEN

Protein-protein interactions are essential for the understanding of biological processes. Specific protein aggregation is an important aspect for many biological systems. In particular, electrostatic interactions play the key role for protein-protein interactions, as many amino acids have pH-dependent charge states. Moreover, protein dissociation is directly related to the solution pH, ionic strength, temperature and protein concentration. The subtle interplay between different specific and non-specific interactions is demonstrated for beta-lactoglobulin (BLG) with a focus on low salt concentrations, thus mimicking technically relevant processing conditions. BLG is a well-characterized model system, proven to attain its monomer-dimer equilibrium strongly dependent upon the pH of the solution. In this manuscript, we present a unique combination of analytical ultracentrifugation and membrane osmometry experiments, which quantifies specific and non-specific interactions, i.e. in terms of the dimer dissociation constants and the second osmotic virial coefficient, at pH 3 and 7 and sodium chloride concentrations of 10 mM and 100 mM. This provides direct insight to protein-protein interactions for a system with a concentration-dependent monomer-dimer equilibrium. Moreover, using a coarse-grained extended DLVO model in combination with molecular dynamics simulations, we quantify non-specific monomer-monomer, monomer-dimer and dimer-dimer interactions as well as the binding free energy of BLG dimerization from theoretical calculations. The experimentally determined interactions are shown to be mainly governed by electrostatic interactions and further agree with free energy calculations. Our experimental protocol aims to determine non-specific and specific interactions for a dynamically interacting system and provides an understanding of protein-protein interactions for BLG at low salt concentrations.


Asunto(s)
Lactoglobulinas , Osmometria , Concentración de Iones de Hidrógeno , Lactoglobulinas/química , Concentración Osmolar , Ultracentrifugación
4.
Nanoscale ; 14(35): 12928-12939, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36043498

RESUMEN

In this study, we introduce a method for the simultaneous retrieval of two-dimensional size-composition distributions of noble metal Ag-Au alloy nanoparticles utilizing an analytical ultracentrifuge equipped with a multiwavelength extinction detector (MWL-AUC). MWL-AUC is used to measure coupled optical and sedimentation properties of the particles. The optical response of the nanoparticles is calculated using Mie's theory, where the particles' complex refractive index is corrected due to the effect of reduced mean free path of electrons. Using a combined analysis of the hydrodynamic and spectral data captured by MWL-AUC, the size and composition of the alloy particles is retrieved. Our method is validated through the analysis of synthetic data and by the very good agreement between experimental scanning transmission electron microscopy and our AUC data. The presented comprehensive characterization approach contributes to improved synthesis, scale-up and production of particulate systems as it provides a simple, fast and direct method to determine noble metal alloy nanoparticle size and composition distributions simultaneously.

5.
Soft Matter ; 17(10): 2803-2814, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33554981

RESUMEN

Analytical centrifugation is a versatile technique for the quantitative characterization of colloidal systems including colloidal stability. The recent developments in data acquisition and evaluation allow the accurate determination of particle size, shape anisotropy and particle density. High precision analytical centrifugation is in particular suited for the study of particle interactions and concentration-dependent sedimentation coefficients. We present a holistic approach for the quantitative determination of sedimentation non-ideality via analytical centrifugation for polydisperse, plain and amino-functionalized silica particles spanning over one order of magnitude in particle size between 100 nm and 1200 nm. These systems typically behave as neutral hard spheres as predicted by auxiliary lattice Boltzmann simulations. The extent of electrostatic interactions and their impact on sedimentation non-ideality can be quantified by the repulsion range, which is the ratio of the Debye length and the average interparticle distance. Experimental access to the repulsion range is provided through conductivity measurements. With the experimental repulsion range at hand, we estimate the effect of polydispersity on concentration-dependent sedimentation properties through a combination of lattice Boltzmann and Brownian dynamics simulations. Finally, we determine the concentration-dependent sedimentation properties of charge-stabilized, fluorescently-labeled silica particles with a nominal particle size of 30 nm and reduced interparticle distance, hence an elevated repulsion range. Overall, our results demonstrate how the influence of hard-sphere type and electrostatic interactions can be quantified when probing sedimentation non-ideality of particulate systems using analytical centrifugation even for systems exhibiting moderate sample heterogeneity and complex interactions.

6.
Nanoscale ; 9(45): 17770-17780, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29131217

RESUMEN

Hydrodynamic and thermodynamic non-ideality are important phenomena when studying concentrated and interacting systems in analytical ultracentrifugation (AUC). Here we present an extended Brownian Dynamics (BD) based algorithm which incorporates hydrodynamic and thermodynamic non-ideality. It can serve as an independent and versatile approach for the theoretical description of interparticulate interactions in AUC, as it allows tracking the trajectory of individual particles. Concentration dependencies of the sedimentation and diffusion coefficient have been implemented and validated for the extended BD model. For monodisperse systems, it is shown that profiles obtained by BD are in excellent agreement with well-established Lamm equation solvers. Moreover, important limits and restrictions of current Lamm equation based analysis methods are discussed. In particular, BD allows modeling and evaluation of AUC data of non-ideal polydisperse systems. This is relevant as most nanoparticulate systems are polydisperse in size. Here, a simulation for a polydisperse system including concentration effects is presented for the first time.

7.
Nat Chem ; 9(9): 862-867, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28837180

RESUMEN

A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

8.
Phys Chem Chem Phys ; 19(21): 13838-13845, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28513678

RESUMEN

Surface defects of ZnO nanoparticles were induced via mechanical stressing using a Turbula shaker mixer and a planetary ball mill, and the possibilities for surface modification and functionalization of the ZnO nanoparticles were exemplified by sulfur doping of activated ZnO. Raman spectroscopy reveals that the formation of oxygen vacancies (VO) does not only occur under high stressing conditions in a planetary ball mill but even upon rather 'mild stressing' in the shaker mixer. The temporal evolution of the vacancy concentration in ZnO stressed under different conditions can be described by a model that accounts for stress number and vacancy diffusion with diffusion coefficients of VO of 3.7 × 10-21 m2 s-1 and 2.4 × 10-20 m2 s-1 for stressing in the shaker and the planetary ball mill, respectively. The thickness of the VO layer was estimated to be about 1 nm. Thiourea was mixed with defective ZnO particles, and then heated at various temperatures for sulfur-doping. A linear relationship between the amount of induced VO and the level of sulfur doping was found. Remarkably, mechanical activation is indispensable in order to control the level of sulfur doping quantitatively. High-angle annular dark field scanning transmission electron microscopy (HAADF STEM) observations with energy dispersive X-ray spectroscopy (EDX) analysis clearly revealed that the doped sulfur atoms are concentrated at the particle surface. Thus, ZnO (core)/ZnS (shell) structures are obtained easily via mechanochemical activation and subsequent thermal treatment.

9.
Nanoscale Horiz ; 2(5): 253-260, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260680

RESUMEN

A combination of orthogonal measurement techniques is utilized in this study to predict the average lengths and diameters of colloidal nanorods. Sedimentation coefficient distributions and electrical mobility distributions obtained from analytical ultracentrifugation and a scanning mobility particle sizer, respectively, are used for the hydrodynamic correlation. The method is validated theoretically and application to Au and ZnO nanorod samples is shown. The results demonstrate that the combination of both measurement techniques is an excellent method for the two-dimensional characterization of nanorods.

10.
Nanoscale ; 8(47): 19882-19893, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27878180

RESUMEN

The functionality of compact nanostructured thin films depends critically on the degree of order and hence on the underlying ordering mechanisms during film formation. For dip coating of rigid nanorods the counteracting mechanisms, evaporation-induced self-assembly (EISA) and shear-induced alignment (SIA) have recently been identified as competing ordering mechanisms. Here, we show how to achieve highly ordered and homogeneous thin films by controlling EISA and SIA in dip coating. Therefore we identify the influences of the process parameters including temperature, initial volume fraction and nanorod aspect ratio on evaporation-induced convective flow and externally applied shear forces and evaluate the resulting films. The impact of evaporation and shear can be distinguished by analysing film thickness, surface order and bulk order by careful in situ SAXS, Raman and SEM-based image analysis. For the first time we derive processing guidelines for the controlled application of EISA and SIA towards highly ordered thin nematic films.

11.
Nanoscale ; 8(14): 7672-82, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26991247

RESUMEN

Elongated particles are predestined for a fast transfer of optical and electronical signals in a preferred direction, which is mandatory for a quick response in optoelectronic devices. The performance of the material is based on the quality of defect less alignment of the particles. On this account we present an easy non-invasive methodology for characterization of both surface and bulk order. The characterization of bulk order is performed by orientation dependent variation of the polarized Raman scattering signal on large areas by mapping. Scanning electron microscopy and image analysis on the surface complete the characterization. New insights in dip coated nematic structures clearly show the interplay of evaporation induced and shear-induced self-assembly and reveal a comprehensive mechanistic picture for nanorod assembly: the shear force dominated regime orients the particle in direction of withdrawal. At low withdrawal velocity, however, shear forces and evaporation counteract to produce a three-layered film where the top and bottom layers are oriented perpendicular to each other. The middle layer gives a clear evidence for a reorientation by convective flow.

12.
Nanoscale Horiz ; 1(3): 220-226, 2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32260624

RESUMEN

We discuss the use of carbon nanodots (CNDs) as sensitizers in mesoscopic solar cells. The CNDs are synthesized using a one-step, bottom-up microwave approach with citric acid, urea, and formic acid as precursors in aqueous media. Their light-harvesting capabilities can be tuned by adjusting the synthetic parameters. Comprehensive spectroscopic and theoretical studies allow us to rationalize the nature of their absorption features. Promising power conversion efficiencies (η) of 0.24% can be achieved from these cheap and eco-friendly sensitizers by optimizing the solar-cell assembly process. Interestingly, we found that extending the light absorption towards longer wavelengths does not necessarily improve the performance of the solar cells, since the longer-wavelength absorption features hardly contribute to the cells' photo-action spectra, so that the overall power conversion efficiency is actually worse. The origin of the lower performance is corroborated in transient absorption spectroscopy and photovoltage decay measurements. Our work points, on one hand, to the limits of as-synthesized CNDs as photosensitizers and, on the other hand, to possible improvements.

13.
J Nanosci Nanotechnol ; 15(12): 10149-55, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26682461

RESUMEN

Promising composite coatings based on hematite (α-Fe2O3) mesocrystals of size 110 nm and chitosan (CHT) molecules for different biotechnological applications have been successfully obtained by electrophoretic deposition (EPD). Homogeneous and reproducible coatings have been obtained by studying and controlling the chemical interactions between both phases (α-Fe2O3 and CHT). A voltage of 25 V and a deposition time of 5 min were chosen as best deposition conditions, which resulted in highly homogeneous coatings with well-distributed α-Fe2O3 particles. According to TGA measurements, the content of α-Fe2O3 and chitosan in the final composite coating were found to be 74 and 26 wt%, respectively. The presence of both phases in the composite coating was determined by XRD analysis and the coatings microstructure was observed by SEM.


Asunto(s)
Quitosano/química , Materiales Biocompatibles Revestidos/química , Compuestos Férricos/química , Nanocompuestos/química , Electroforesis
14.
Nanoscale ; 7(43): 18105-18, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26469399

RESUMEN

In this work we investigated fundamental properties of CuInS2 quantum dots in dependence of the particle size distribution (PSD). Size-selective precipitation (SSP) with acetone as poor solvent was performed as an adequate post-processing step. Our results provide deep insight into the correlation between particle size and various optical characteristics as bandgap energy, absorption and emission features and the broadness of the emission signal. These structure-property relationships are only achieved due to the unique combination of different analytical techniques. Our study reveals that the removal of 10 wt% of smallest particles from the feed results in an enhancement of the emission signal. This improvement is ascribed to a decreased quenching of the emission in larger particles. Our results reveal the impact of PSDs on the properties and the performance of an ensemble of multicomponent QDs and anticipate the high potential of controlling PSDs by well-developed post-processing.

15.
Langmuir ; 31(37): 10130-6, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26327573

RESUMEN

ZnO nanoparticles (NPs) have great potential for their use in, e.g., thin film solar cells due to their electro-optical properties adjustable on the nanoscale. Therefore, the production of well-defined NPs is of major interest. For a targeted production process, the knowledge of the stabilization layer of the NPs during and after their formation is of particular importance. For the study of the stabilizer layer of ZnO NPs prepared in a wet chemical synthesis from zinc acetate, only ex situ studies have been performed so far. An acetate layer bound to the surface of the dried NPs was found; however, an in situ study which addresses the stabilizing layer surrounding the NPs in a native dispersion was missing. By the combination of small angle scattering with neutrons and X-rays (SANS and SAXS) for the same sample, we are now able to observe the acetate shell in situ for the first time. In addition, the changes of this shell could be followed during the ripening process for different temperatures. With increasing size of the ZnO core (d(core)) the surrounding shell (d(shell)) becomes larger, and the acetate concentration within the shell is reduced. For all samples, the shell thickness was found to be larger than the maximum extension of an acetate molecule with acetate concentrations within the shell below 50 vol %. Thus, there is not a monolayer of acetate molecules that covers the NPs but rather a swollen shell of acetate ions. This shell is assumed to hinder the growth of the NPs to larger macrostructures. In addition, we found that the partition coefficient µ between acetate in the shell surrounding the NPs and the total amount of acetate in the solution is about 10% which is in good agreement with ex situ data determined by thermogravimetric analysis.

16.
J Colloid Interface Sci ; 417: 171-9, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24407674

RESUMEN

The dynamic wetting behaviour and the mobility of droplets on fibres is a very important factor in coating processes, textile fabrication, in self-cleaning processes and in the filtration of fluids. In principal, filter regeneration depends on the mobility of the droplets on the fibre surface. Mobile droplets tend to coalesce which greatly simplifies their removal from the filter. In this contribution mobility analyses of water droplets on monofilaments in air are performed. Studies of droplet evaporation on pure PET fibres and on nanorough fibres coated with SiO2 nanoparticles of diameters between 6 nm and 50 nm in a hydrophilic binder system were done. We show that the mobility of water droplets correlates with the droplet conformation which in turn is determined by the droplet-fibre interface. We demonstrate that fibre coatings can be used to tailor the conformation and mobility of water droplets. The smaller the nanoparticle diameters in the coating are, the smaller are the contact angles between water droplets and fibre and the better is the mobility of the droplets on the fibre. Our results allow a fast optimization of the fibre surface properties which are directly influencing the contact angle, the mobility and the coalescence of water droplets and thus filter regeneration.

17.
J Phys Chem B ; 117(33): 9683-9, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23889004

RESUMEN

The adsorption behavior and electronic interactions of bovine serum albumin (BSA) with ZnO nanorod surfaces were investigated using high-resolution transmission electron microscopy as well as stationary and time-resolved optical spectroscopy techniques. Transmission electron microscopy shows that ZnO nanorod surfaces are surrounded by a homogeneous amorphous BSA film with thicknesses between ~2.5 and 5.0 nm. The electronic structure and adsorption geometry of BSA were examined using high-angle annular dark field scanning transmission electron microscopy combined with electron energy loss spectroscopy. The adsorption process was observed to result into an unfolded conformation of BSA becoming predominantly bound in the side-on orientation at the ZnO surface. This adsorption mode of the BSA molecules allows for a strong interaction with surface states of the ZnO nanorods. This is obvious from its efficient quenching of the defect-center photoluminescence of ZnO. Complementary information of electronic interactions across the ZnO nanorod interface was obtained from femtosecond transient absorption spectroscopy experiments. The rise dynamics of the measured transients revealed altered hole trapping dynamics and, thus, indicated to heterogeneous charge transfer as emerging from adsorbed BSA molecules to defect centers of the ZnO interface.


Asunto(s)
Nanotubos/química , Albúmina Sérica Bovina/química , Óxido de Zinc/química , Animales , Bovinos , Electrones , Microscopía Electrónica de Transmisión , Albúmina Sérica Bovina/metabolismo
18.
Nanotechnology ; 24(11): 115604, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23449006

RESUMEN

The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens' reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.

19.
Rev Sci Instrum ; 83(9): 095105, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23020417

RESUMEN

We report on the development and characterization of a novel in situ manipulation device to perform stressing experiments on the submicron scale inside a high resolution field emission scanning electron microscope. The instrument comprises two main assembly groups: an upper part for positioning and moving a mounted probe and a force sensor as well as a specimen support as lower part. The upper part consists of a closed loop tripod piezoelectric scanner mounted on a self-locking coarse positioning stage. Two interlocked steel springs and a linear variable differential transformer measuring the springs' deflections compose the lower part of the instrument. This arrangement acts as force-sensor and sample support. In comparison to already well-established concepts a wide measuring range is covered by adjusting the spring constant between 30 N/m and 50000 N/m. Moreover, the new device offers striking advantages with respect to force calibration and sample deformation measurements. Force calibration is performed using the eigenfrequency of the force detection system directly inside the SEM. Deformation data are obtained with high accuracy by simultaneously recording displacements above and below the specimen. The detrimental apparatus compliance is determined, and the influence on measured data subsequently minimized: an easy to validate two-springs-in-series model is used for data correction. A force resolution in normal direction of 100 nN accompanied by a sample deformation resolution of 5 nm can be achieved with the instrument using an appropriate load cell stiffness. The capabilities and versatility of this instrument are exemplified by compression experiments performed on submicron amorphous silica particles.

20.
J Colloid Interface Sci ; 363(1): 386-92, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21820123

RESUMEN

The formation of free radicals during wet grinding of alumina in a stirred media mill was studied by using the test radical 2,2-diphenyl-1-picrylhydracyl (DPPH). The kinetics of mechano-chemical radical formation follows a zeroth-order rate law. Particle breakage as well as mechanical activation of the surface of the alumina particles contributes to the radical formation. The rate constants of the radical formation due to mechanical activation of the particle surface k(A) and due to particle breakage k(B) depend on the milling process parameters. The radical formation during wet grinding of alumina was exploited to initiate mechano-chemical polymerization reactions of acrylic acid and acryl amide, respectively. In this way nanoparticles functionalized with polyacrylic acid and polyacryl amide, respectively, are obtained. The influence of the milling process parameters on the kinetics of mechano-chemical radical formation and on the grafted amount of polymer is discussed on the basis of stress energy and number of stress events in the mill. A correlation between the grafted amount of polyacryl amide on the alumina particles and the total radical formation rate was found showing that the concentration of mechano-chemically formed free radicals governs the efficacy of a chemical reaction at activated particle surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...