Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 147(10)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32253238

RESUMEN

The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.


Asunto(s)
Ventrículos Laterales/embriología , Ventrículos Laterales/crecimiento & desarrollo , Neurogénesis/genética , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Técnicas de Inactivación de Genes , Interneuronas/metabolismo , Ventrículos Laterales/metabolismo , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/metabolismo , Factores de Transcripción SOXD/metabolismo , Transducción de Señal/inmunología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
2.
Nat Rev Neurosci ; 20(6): 318-329, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30874623

RESUMEN

The cerebral cortex is an evolutionarily advanced brain structure that computes higher motor, sensory and cognitive functions. Its complex organization reflects the exquisite cell migration and differentiation patterns that take place during embryogenesis. Recent evidence supports an essential role for cell migration in shaping the developing cerebral cortex via direct cellular contacts and spatially organized diffusible cues that regulate the establishment of its cytoarchitecture and function. Identifying the nature of the crosstalk between cell populations at play during brain development is key to understanding how cerebral cortical morphogenesis proceeds in health and disease.


Asunto(s)
Comunicación Celular/fisiología , Movimiento Celular/fisiología , Corteza Cerebral/fisiología , Morfogénesis/fisiología , Neurogénesis/fisiología , Animales , Corteza Cerebral/citología , Humanos
3.
Nature ; 567(7746): 113-117, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787442

RESUMEN

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Unión al ADN/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/embriología , Microtúbulos/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Uniones Intercelulares/metabolismo , Interfase , Ventrículos Laterales/anatomía & histología , Glándulas Mamarias Animales/citología , Ratones , Tamaño de los Órganos , Organoides/citología
4.
Cell Rep ; 23(8): 2429-2442, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791853

RESUMEN

The protein p27Kip1 plays roles that extend beyond cell-cycle regulation during cerebral cortex development, such as the regulation of neuronal migration and neurite branching via signaling pathways that converge on the actin and microtubule cytoskeletons. Microtubule-dependent transport is essential for the maturation of neurons and the establishment of neuronal connectivity though synapse formation and maintenance. Here, we show that p27Kip1 controls the transport of vesicles and organelles along the axon of mice cortical projection neurons in vitro. Moreover, suppression of the p27Kip1 ortholog, dacapo, in Drosophila melanogaster disrupts axonal transport in vivo, leading to the reduction of locomotor activity in third instar larvae and adult flies. At the molecular level, p27Kip1 stabilizes the α-tubulin acetyltransferase 1, thereby promoting the acetylation of microtubules, a post-translational modification required for proper axonal transport.


Asunto(s)
Acetiltransferasas/metabolismo , Transporte Axonal , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Acetilación , Animales , Drosophila melanogaster/metabolismo , Estabilidad de Enzimas , Femenino , Células HEK293 , Histona Desacetilasa 6/metabolismo , Humanos , Masculino , Ratones , Microtúbulos/metabolismo , Modelos Biológicos , Actividad Motora , Neuronas/metabolismo , Unión Proteica
5.
Cell ; 172(5): 1063-1078.e19, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474907

RESUMEN

Interneurons navigate along multiple tangential paths to settle into appropriate cortical layers. They undergo a saltatory migration paced by intermittent nuclear jumps whose regulation relies on interplay between extracellular cues and genetic-encoded information. It remains unclear how cycles of pause and movement are coordinated at the molecular level. Post-translational modification of proteins contributes to cell migration regulation. The present study uncovers that carboxypeptidase 1, which promotes post-translational protein deglutamylation, controls the pausing of migrating cortical interneurons. Moreover, we demonstrate that pausing during migration attenuates movement simultaneity at the population level, thereby controlling the flow of interneurons invading the cortex. Interfering with the regulation of pausing not only affects the size of the cortical interneuron cohort but also impairs the generation of age-matched projection neurons of the upper layers.


Asunto(s)
Movimiento Celular , Corteza Cerebral/citología , Interneuronas/citología , Morfogénesis , Actomiosina/metabolismo , Animales , Carboxipeptidasas/metabolismo , Ciclo Celular , Factores Quimiotácticos/metabolismo , Embrión de Mamíferos/citología , Femenino , Eliminación de Gen , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/metabolismo , Neurogénesis , Fenotipo
6.
Sci Rep ; 6: 33377, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27640816

RESUMEN

Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson's disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls.


Asunto(s)
Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/enzimología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Neuritas/metabolismo , Animales , Células Cultivadas , Humanos , Mesencéfalo/citología , Ratones , Células-Madre Neurales/citología , Enfermedad de Parkinson/genética , Fenotipo
7.
Front Cell Neurosci ; 9: 129, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926769

RESUMEN

During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.

8.
Cell Tissue Res ; 359(1): 17-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25141969

RESUMEN

The mammalian cerebral cortex is characterized by a complex histological organization that reflects the spatio-temporal stratifications of related stem and neural progenitor cells, which are responsible for the generation of distinct glial and neuronal subtypes during development. Some work has been done to shed light on the existing filiations between these progenitors as well as their respective contribution to cortical neurogenesis. The aim of the present review is to summarize the current views of progenitor hierarchy and relationship in the developing cortex and to further discuss future research directions that would help us to understand the molecular and cellular regulating mechanisms involved in cerebral corticogenesis.


Asunto(s)
Linaje de la Célula , Corteza Cerebral/citología , Corteza Cerebral/embriología , Células-Madre Neurales/citología , Animales , Evolución Biológica , Humanos , Neuronas/citología , Huso Acromático/metabolismo
9.
Dev Growth Differ ; 54(3): 287-305, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22524602

RESUMEN

Neurogenesis is a dynamic process that produces a diverse number of glial and neural cell types from a limited number of neural stem cells throughout development and into adulthood. After an initial period of amplification through symmetric division, neural stem cells rely on asymmetric modes of division to self-renew while producing more committed progeny. Understanding the molecular mechanisms regulating the choice between symmetric and asymmetric modes of division is essential to understand human brain development and pathologies, and to explain the increasing cortical complexity observed in evolution. A popular model states the existence of a causal relationship between the orientation of the axis of division of stem cells and the fate of their progeny in many different tissues, but the validity of the model in neural stem cells is not clear. In this review, we briefly present the diversity of neural stem cells and intermediate progenitors in the developing central nervous system. We then draw a historic overview of the assumed causal relationship between spindle orientation and fate determination. We show how this prompted a search for regulators of spindle orientation, and present the current state of knowledge on the mechanism. Finally, we review data on the effect of defective spindle orientation and try to integrate conflicting observations by presenting alternative mechanisms that may regulate the choice between symmetric and asymmetric outcomes.


Asunto(s)
Polaridad Celular , Neurogénesis , Huso Acromático/fisiología , Vertebrados/embriología , Animales , División Celular , Proliferación Celular , Forma de la Célula , Centrosoma/fisiología , Humanos , Microtúbulos/fisiología , Neocórtex/citología , Neocórtex/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Células Neuroepiteliales/citología , Células Neuroepiteliales/fisiología , Transducción de Señal , Vertebrados/fisiología
10.
J Cell Biol ; 193(1): 141-54, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21444683

RESUMEN

To maintain tissue architecture, epithelial cells divide in a planar fashion, perpendicular to their main polarity axis. As the centrosome resumes an apical localization in interphase, planar spindle orientation is reset at each cell cycle. We used three-dimensional live imaging of GFP-labeled centrosomes to investigate the dynamics of spindle orientation in chick neuroepithelial cells. The mitotic spindle displays stereotypic movements during metaphase, with an active phase of planar orientation and a subsequent phase of planar maintenance before anaphase. We describe the localization of the NuMA and LGN proteins in a belt at the lateral cell cortex during spindle orientation. Finally, we show that the complex formed of LGN, NuMA, and of cortically located Gαi subunits is necessary for spindle movements and regulates the dynamics of spindle orientation. The restricted localization of LGN and NuMA in the lateral belt is instructive for the planar alignment of the mitotic spindle, and required for its planar maintenance.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitosis , Células Neuroepiteliales/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Huso Acromático/metabolismo , Corteza Visual/metabolismo , Animales , Proteínas de Ciclo Celular , División Celular , Embrión de Pollo , Pollos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas de Complejo Poro Nuclear/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA