Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 50(11): 3251-3264, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291448

RESUMEN

PURPOSE: We aimed to assess the effect of concomitant medication, age, sex, body mass index and 18-kDa translocator protein (TSPO) binding affinity status on the metabolism and plasma pharmacokinetics of [18F]DPA-714 and their influence on the plasma input function in a large cohort of 201 subjects who underwent brain and whole-body PET imaging to investigate the role of neuroinflammation in neurological diseases. METHODS: The non-metabolized fraction of [18F]DPA-714 was estimated in venous plasma of 138 patients and 63 healthy controls (HCs; including additional arterial sampling in 16 subjects) during the 90 min brain PET acquisition using a direct solid-phase extraction method. The mean fraction between 70 and 90 min post-injection ([18F]DPA-71470-90) and corresponding normalized plasma concentration (SUV70-90) were correlated with all factors using a multiple linear regression model. Differences between groups (arterial vs venous measurements; HCs vs patients; high- (HAB), mixed- (MAB) and low-affinity binders (LAB); subjects with vs without co-medications, females vs males were also assessed using the non-parametric Mann-Whitney or Kruskal-Wallis ANOVA tests. Finally, the impact of co-medications on the brain uptake of [18F]DPA-714 at equilibrium was investigated. RESULTS: As no significant differences were observed between arterial and venous [18F]DPA-71470-90 and SUV70-90, venous plasma was used for correlations. [18F]DPA-71470-90 was not significantly different between patients and HCS (59.7 ± 12.3% vs 60.2 ± 12.9%) despite high interindividual variability. However, 47 subjects exhibiting a huge increase or decrease of [18F]DPA-71470-90 (up to 88% or down to 23%) and SUV70-90 values (2-threefold) were found to receive co-medications identified as inhibitors or inducers of CYP3A4, known to catalyse [18F]DPA-714 metabolism. Comparison between cortex-to-plasma ratios using individual input function (VTIND) or population-based input function derived from untreated HCs (VTPBIF) indicated that non-considering the individual metabolism rate led to a bias of about 30% in VT values. Multiple linear regression model analysis of subjects free of these co-medications suggested significant correlations between [18F]DPA-71470-90 and age, BMI and sex while TSPO polymorphism did not influence the metabolism of the radiotracer. [18F]DPA-714 metabolism fell with age and BMI and was significantly faster in females than in males. Whole-body PET/CT exhibited a high uptake of the tracer in TSPO-rich organs (heart wall, spleen, kidneys…) and those involved in metabolism and excretion pathways (liver, gallbladder) in HAB and MAB with a strong decrease in LAB (-89% and -85%) resulting in tracer accumulation in plasma (4.5 and 3.3-fold increase). CONCLUSION: Any co-medication that inhibits or induces CYP3A4 as well as TSPO genetic status, age, BMI and sex mostly contribute to interindividual variations of the radiotracer metabolism and/or concentration that may affect the input function of [18F]DPA-714 and consequently its human brain and peripheral uptake. TRIAL REGISTRATION: INFLAPARK, NCT02319382, registered December 18, 2014, retrospectively registered; IMABIO 3, NCT01775696, registered January 25, 2013, retrospectively registered; INFLASEP, NCT02305264, registered December 2, 2014, retrospectively registered; EPI-TEP, EudraCT 2017-003381-27, registered September 24, 2018.


Asunto(s)
Citocromo P-450 CYP3A , Tomografía Computarizada por Tomografía de Emisión de Positrones , Masculino , Femenino , Humanos , Índice de Masa Corporal , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/farmacología , Radioisótopos de Flúor , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 44(2): 296-307, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27699720

RESUMEN

PURPOSE: To determine the metabolic profiles of the translocator protein ligands PBR102 and PBR111 in rat and human microsomes and compare their in vivo binding and metabolite uptake in the brain of non-human primates (Papio hamadryas) using PET-CT. METHODS: In vitro metabolic profiles of PBR102 and PBR111 in rat and human liver microsomes were assessed by liquid chromatography-tandem mass spectrometry. [18F]PBR102 and [18F]PBR111 were prepared by nucleophilic substitution of their corresponding p-toluenesulfonyl precursors with [18F]fluoride. List mode PET-CT brain imaging with arterial blood sampling was performed in non-human primates. Blood plasma measurements and metabolite analysis, using solid-phase extraction, provided the metabolite profile and metabolite-corrected input functions for kinetic model fitting. Blocking and displacement PET-CT scans, using PK11195, were performed. RESULTS: Microsomal analyses identified the O-de-alkylated, hydroxylated and N-de-ethyl derivatives of PBR102 and PBR111 as the main metabolites. The O-de-alkylated compounds were the major metabolites in both species; human liver microsomes were less active than those from rat. Metabolic profiles in vivo in non-human primates and previously published rat experiments were consistent with the microsomal results. PET-CT studies showed that K1 was similar for baseline and blocking studies for both radiotracers; VT was reduced during the blocking study, suggesting low non-specific binding and lack of appreciable metabolite uptake in the brain. CONCLUSIONS: [18F]PBR102 and [18F]PBR111 have distinct metabolic profiles in rat and non-human primates. Radiometabolites contributed to non-specific binding and confounded in vivo brain analysis of [18F]PBR102 in rodents; the impact in primates was less pronounced. Both [18F]PBR102 and [18F]PBR111 are suitable for PET imaging of TSPO in vivo. In vitro metabolite studies can be used to predict in vivo radioligand metabolism and can assist in the design and development of better radioligands.


Asunto(s)
Encéfalo/metabolismo , Imidazoles/farmacocinética , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Piridinas/farmacocinética , Receptores de GABA/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Evaluación Preclínica de Medicamentos/métodos , Humanos , Marcaje Isotópico/métodos , Ligandos , Masculino , Tasa de Depuración Metabólica , Especificidad de Órganos , Papio , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad de la Especie , Distribución Tisular
3.
Eur J Nucl Med Mol Imaging ; 42(3): 478-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25488184

RESUMEN

PURPOSE: We aimed to characterize pharmacologically the TSPO- radioligand [(18)F]DPA-714 in the brain of healthy cynomolgus monkeys and evaluate the cellular origin of its binding in a model of neurodegeneration induced by intrastriatal injection of quinolinic acid (QA). METHODS: [(18)F]DPA-714 PET images were acquired before and at 2, 7, 14, 21, 49, 70, 91 days after putaminal lesioning. Blocking and displacement studies were carried out (PK11195). Different modelling approaches estimated rate constants and V T (total distribution volume) which was used to measure longitudinal changes in the lesioned putamen. Sections for immunohistochemical labelling were prepared at the same time-points to evaluate correlations between in vivo [(18)F]DPA-714 binding and microglial/astrocytic activation. RESULTS: [(18)F]DPA-714 showed a widespread distribution with a higher signal in the thalamus and occipital cortex and lower binding in the cerebellum. TSPO was expressed throughout the whole brain and about 73 % of [(18)F]DPA-714 binding was specific for TSPO in vivo. The one-tissue compartment model (1-TCM) provided good and reproducible estimates of V T and rate constants, and V T values from the 1-TCM and the Logan approach were highly correlated (r (2) = 0.85). QA lesioning induced an increase in V T, which was +17 %, +54 %, +157 % and +39 % higher than baseline on days 7, 14, 21 and 91 after QA injection, respectively. Immunohistochemistry revealed an early microglial and a delayed astrocytic activation after QA injection. [(18)F]DPA-714 binding matched TSPO immunopositive areas and showed a stronger colocalization with CD68 microglia than with GFAP-activated astrocytes. CONCLUSION: [(18)F]DPA-714 binds to TSPO with high specificity in the primate brain under normal conditions and in the QA model. This tracer provides a sensitive tool for assessing neuroinflammation in the human brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones , Pirazoles/farmacocinética , Pirimidinas/farmacocinética , Radiofármacos/farmacocinética , Animales , Radioisótopos de Flúor/farmacocinética , Macaca fascicularis , Masculino , Receptores de GABA-A/metabolismo , Distribución Tisular
4.
Brain ; 129(Pt 8): 2047-60, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16815873

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are involved in a familial form of frontal lobe epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In several ADNFLE families, mutations were identified in the nAChR alpha4 or beta2 subunit, which together compose the main cerebral nAChR. Electrophysiological assessment using in vitro expression systems indicated a gain of function of the mutant receptors. However the precise mechanisms by which they contribute to the pathogenesis of a focal epilepsy remain obscure, especially since alpha4beta2 nAChRs are known to be widely distributed within the entire brain. PET study using [18F]-F-A-85380, a high affinity agonist at the alpha4beta2 nAChRs, allows the determination of the regional distribution and density of the nAChRs in healthy volunteers and in ADNFLE patients, thus offering a unique opportunity to investigate some in vivo consequences of the molecular defect. We have assessed nAChR distribution in eight non-smoking ADNFLE patients (from five families) bearing an identified mutation in nAChRs and in seven age-matched non-smoking healthy volunteers using PET and [(18)F]-F-A-85380. Parametric images of volume of distribution (Vd) were generated as the ratio of tissue to plasma radioactivities. The images showed a clear difference in the pattern of the nAChR density in the brains of the patients compared to the healthy volunteers. Vd values revealed a significant increase (between 12 and 21%, P < 0.05) in the ADNFLE patients in the mesencephalon, the pons and the cerebellum when compared to control subjects. Statistical parametric mapping (SPM) was then used to better analyse subtle regional differences. This analysis confirmed clear regional differences between patients and controls: patients had increased nAChR density in the epithalamus, ventral mesencephalon and cerebellum, but decreased nAChR density in the right dorsolateral prefrontal region. In five patients who underwent an additional [(18)F]-fluorodeoxyglucose (FDG) PET experiment, hypometabolism was observed in the neighbouring area of the right orbitofrontal cortex. The demonstration of a regional nAChR density decrease in the prefrontal cortex, despite the known distribution of these receptors throughout the cerebral cortex, is consistent with a focal epilepsy involving the frontal lobe. We also propose that the nAChR density increase in mesencephalon is involved in the pathophysiology of ADNFLE through the role of brainstem ascending cholinergic systems in arousal.


Asunto(s)
Encéfalo/metabolismo , Epilepsia del Lóbulo Frontal/metabolismo , Receptores Nicotínicos/metabolismo , Adulto , Azetidinas/farmacocinética , Encéfalo/diagnóstico por imagen , Células Cultivadas , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Epilepsia del Lóbulo Frontal/diagnóstico por imagen , Epilepsia del Lóbulo Frontal/genética , Femenino , Radioisótopos de Flúor , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Mesencéfalo/diagnóstico por imagen , Mesencéfalo/metabolismo , Mutación , Tomografía de Emisión de Positrones/métodos , Piridinas/farmacocinética , Receptores Nicotínicos/genética
5.
J Biol Chem ; 272(6): 3272-9, 1997 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-9013565

RESUMEN

Southern blot analysis has demonstrated that the 5' portion of the rabbit liver dexamethasone-inducible UDP-glucuronosyltransferase (UGT) 2B13 RNA is related in sequence to a family of UGT genes (Tukey, R. H., Pendurthi, U. R., Nguyen, N. T., Green, M. D., and Tephly, T. R. (1993) J. Biol. Chem. 268, 15260-15266). To identify these additional gene transcripts, rabbit liver cDNA libraries were screened with a 5' conserved 330-base pair UGT2B13 cDNA fragment, resulting in the isolation and characterization of several rabbit liver UGT cDNAs. One such clone, called pGT11, encodes a putative glycoprotein that is 78% similar to rabbit UGT2B13. The new UGT has been designated UGT2B16. The UGT2B16 gene is expressed as a single 4200-base RNA transcript that is regulated only in adult rabbits. The predicted NH2-terminal 25 amino acids of UGT2B16 are identical to that of rabbit liver UGT2B13, with the remainder of the protein being 77% similar to UGT2B13. Expressed UGT2B16 protein in COS-1 cells was active toward 4-hydroxybiphenyl, similar to that of UGT2B13. However, UGT2B16 efficiently conjugated 4-hydroxyestrone and 4-tert-butylphenol, substrates that are not efficiently catalyzed by UGT2B13. To further characterize the structural domains of UGT2B16 and UGT2B13, a series of chimeric cDNAs were constructed that contained portions of both UGT2B16 and UGT2B13. Chimeric 2B163002B13531, which contained the amino-terminal UGT2B16 amino acids 1-300 followed by amino acids 301-531 of UGT2B13, as well as chimeric 2B163582B13531 and 2B164342B13531 proteins, catalyzed the glucuronidation of 4-hydroxyestrone, indicating that the carboxyl terminus of UGT2B13 could substitute for those same regions on UGT2B16. However, the replacement of the carboxyl end of UGT2B13 with 2B16300-531 or 2B16434-531 dramatically impaired the catalytic function of the chimeric proteins. These results indicate that the carboxyl end of UGT2B13 plays an important role in the functional and possible conformational state of the protein.


Asunto(s)
Glucuronosiltransferasa/genética , Hígado/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Células COS , ADN Complementario/química , Datos de Secuencia Molecular , Conejos , Alineación de Secuencia , Transfección
6.
Eur J Biochem ; 223(3): 947-56, 1994 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-8055971

RESUMEN

The interaction between rat and human liver cytochromes P450 with a series of lysergic acid derivatives and ergopeptide alkaloids was studied by difference visible spectroscopy. Ergopeptides, like bromocriptine, ergocryptine and dihydroergotamine, strongly interacted with rat liver microsomes with the appearance of a difference spectrum which is characteristic of their binding to a protein site close to the heme. The intensity of this spectrum was clearly dependent on the amounts of P450s 3A in the microsomes and was at its maximum in dexamethasone-treated rat microsomes. All the ergopeptides studied exhibited a high affinity for rat P450s 3A (Ks around 1 microM), although lysergic acid derivatives not bearing the tripeptide moiety failed to give significant interactions with these P450s. A cyclic azatripeptide exhibiting a structure very similar to that of the tripeptide moiety of ergopeptides also interacted with P450s 3A with appearance of an intense type I difference spectrum. Very similar results were observed with two allelic forms of human liver P450 3A4, P450 NF25 and P450 hPCN1, produced in yeast. In both cases all the ergopeptides studied showed high affinities for the P450s (Ks 0.6-2.2 microM) and an intense shift from the low-spin to the high-spin state upon substrate binding (60-100% spin shift). Lysergic acid derivatives not bearing the tripeptide group of ergopeptides also completely failed to interact with P450s 3A4. Liver microsomes from rats pretreated with dexamethasone, a specific inducer of P450 3A, were found to be particularly active for the hydroxylation of bromocriptine, which occurs at the level of its tripeptide moiety. Human liver microsomes as well as P450 NF25 and P450 hPCN1 also exhibited a high activity for bromocriptine hydroxylation at this level. These results show that ergopeptides exhibit a particularly high affinity for P450s of the 3A subfamily. The tripeptide moiety of ergopeptides is essential for their recognition by P450s 3A and binds at a site close to P450 heme, producing type-I difference spectra. Accordingly, at least one of the studied ergopeptides, bromocriptine, is hydroxylated by P450s 3A at the proline ring of the cyclopeptide moiety. As cyclosporine is known to be a good substrate of P450s 3A, these results suggest that P450s 3A may be especially prone in a general manner to recognize and oxidize peptides or pseudopeptides.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ergolinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Péptidos/metabolismo , Animales , Bromocriptina/metabolismo , Citocromo P-450 CYP2E1 , Sistema Enzimático del Citocromo P-450/genética , Dexametasona/farmacología , Dihidroergotamina/metabolismo , Humanos , Hidroxilación , Isoenzimas/genética , Isoenzimas/metabolismo , Ácido Lisérgico/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Oxigenasas de Función Mixta/genética , NADP/metabolismo , Oxidación-Reducción , Ratas , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Especificidad por Sustrato
7.
Eur J Biochem ; 218(2): 355-61, 1993 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-8269924

RESUMEN

Three natural allelic cDNAs coding for P-450 3A4, the major form in human liver, namely NF25, NF10 and hPCN1, have been expressed in Saccharomyces cerevisiae. NF25 and hPCN1 were functionally expressed in yeast microsomes, yielding proteins with an absorption maximum at 448 nm in the CO-reduced difference spectrum. Some catalytic activities and substrate binding properties of P-450 NF25 and P-450 hPCN1 in yeast microsomes have been compared; no striking difference was found, showing that the two point substitutions between their amino-acid sequences (Trp392 and Thr431 in P-450 NF25 are replaced by Val392 and Ile431 in P-450 hPCN1) have no significant effect on the functional properties of these two variants. By contrast, P-450 NF10, which differs from P-450 NF25 by a one-amino-acid deletion (Ile224 replacing Thr224-Val225), was produced as a denatured form, as revealed by an absorption maximum at 420 nm, and was not catalytically active. This suggests that the deletion prevents the correct folding of the protein. The results of this study show that P-450 NF25 and P-450 hPCN1 are two roughly equivalent, functionally active variants of P-450 3A4, but that P-450 NF10 is a defective, unstable gene product that could arise from an alternative mRNA splicing. This could contribute to the large variations reported for nifedipine oxidation, a typical P-450 3A4 activity, in human liver.


Asunto(s)
Alelos , Sistema Enzimático del Citocromo P-450/genética , Hígado/enzimología , Oxigenasas de Función Mixta/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Catálisis , Clonación Molecular , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , ADN Complementario , Estabilidad de Enzimas , Humanos , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
8.
Toxicology ; 82(1-3): 39-52, 1993 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-8236280

RESUMEN

The usefulness of cDNA-directed expression of human hepatic P450s in yeast for the in vitro study of drug metabolism is emphasized. The major advantages of yeast expression are: (i) relatively high yields of heterologous P450 (approximately 5-10 nmol/l of culture medium) can be obtained; (ii) the expressed P450s are directly active in yeast microsomes, allowing the determination of specific catalytic activities of individual isoforms, which is a prerequisite for the prediction of metabolic pathways for new drug candidates; (iii) transformed yeast microsomes can also be used to study the specific affinity of individual P450s for various substrates and the formation of P450-metabolite complexes by difference visible spectroscopy; such studies can help to predict drug interactions. The advantages of expression in yeast with respect to biochemical studies of drug metabolism are illustrated with data about P450 NF25 (P450 3A4), the major form of human liver. Expressed P450 NF25 is obtained in a functionally active state, and some specific catalytic activities observed in liver microsomes could be reproduced directly with transformed yeast microsomes. The use of genomically modified yeast strains coexpressing human cytochrome b5 and/or overexpressing yeast P450-reductase allowed us to optimize these catalytic activities. In particular, this coexpression system was useful in the study of the in vitro formation of a P450 NF25 Fe(II)-RNO complex. Such inhibitory complexes have been implied in numerous drug interactions involving P450 3A4.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Saccharomyces cerevisiae/genética , Animales , Clonación Molecular , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromos b5/genética , Humanos , Hígado/enzimología , NADPH-Ferrihemoproteína Reductasa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Eur J Biochem ; 207(1): 109-16, 1992 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-1628642

RESUMEN

Human liver P450 NF25 (CYP3A4) had been previously expressed in Saccharomyces cerevisiae using the inducible GAL10-CYC1 promoter and the phosphoglycerate kinase gene terminator [Renaud, J. P., Cullin, C., Pompon, D., Beaune, P. and Mansuy, D. (1990) Eur. J. Biochem. 194, 889-896]. The use of an improved expression vector [Urban, P., Cullin, C. and Pompon, D. (1990) Biochimie 72, 463-472] increased the amounts of P450 NF25 produced/culture medium by a factor of five, yielding up to 10 nmol/l. The availability of recently developed host cells that simultaneously overexpress yeast NADPH-P450 reductase and/or express human liver cytochrome b5, obtained through stable integration of the corresponding coding sequences into the yeast genome, led to biotechnological systems with much higher activities of yeast-expressed P450 NF25 and with much better ability to form P450 NF25-iron-metabolite complexes. 9-fold, 8-fold, and 30-fold rate increases were found respectively for nifedipine 1,4-oxidation, lidocaine N-deethylation and testosterone 6 beta-hydroxylation between P450 NF25-containing yeast microsomes from the basic strain and from the strain that both overexpresses yeast NADPH-P450 reductase and expresses human cytochrome b5. Even higher turnovers (15-fold, 20-fold and 50-fold rate increases) were obtained using P450 NF25-containing microsomes from the yeast just overexpressing yeast NADPH-P450 reductase in the presence of externally added, purified rabbit liver cytochrome b5. This is explained by the fact that the latter strain contained the highest level of NADPH-P450 reductase activity. It is noteworthy that for the three tested substrates, the presence of human or rabbit cytochrome b5 always showed a stimulating effect on the catalytic activities and this effect was saturable. Indeed, addition of rabbit cytochrome b5 to microsomes from a strain expressing human cytochrome b5 did not further enhance the catalytic rates. The yeast expression system was also used to study the formation of a P450-NF25-iron-metabolite complex. A P450 Fe(II)-(RNO) complex was obtained upon oxidation of N-hydroxyamphetamine, catalyzed by P450-NF25-containing yeast microsomes. In microsomes from the basic strain expressing P450 NF25, 10% of the starting P450 NF25 was transformed into this metabolite complex, whereas more than 80% of the starting P450 NF25 led to complex formation in microsomes from the strain overexpressing yeast NADPH-P450 reductase.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Citocromos b5/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Microsomas Hepáticos/enzimología , NADPH-Ferrihemoproteína Reductasa/genética , Conejos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...