Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Anim Sci ; 5(2): txab068, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34189414

RESUMEN

This study aimed to evaluate the effect of autoclave processing on compressive stress of spongy and cortical bones, and the effect of autoclaved bones as chewing agents to reduce dental calculus in adult dogs. Spongy and cortical bones were autoclaved (1 ATM, 30 min, and 120°C) and compressive strength was evaluated in autoclaved and raw bone specimens. Autoclaved bones were offered to ten Beagle dogs divided into two groups of 5 dogs each: Group 1 - received a portion of the autoclaved bovine cortical bone (ACB) and Group 2 - received a portion of the autoclaved bovine spongy bone (ASB). Prior to the experimental period (1-d) and every two days thereafter, oral photographs were taken on both sides of the dental arch to evaluate dental calculus reduction over time. The vestibular surface of the canines, premolars, and molars teeth was evaluated using integration software to measure the proportion between the area covered by calculus and the total teeth area. The effect of bone type, treatment (raw vs. autoclaved), and their interaction were evaluated using the PROC GLIMMIX procedure of SAS (version 9.4). Linear equations were generated to estimate calculus reduction over time for ACB and ASB. Compressive strength was higher (P < 0.05) in cortical bones compared to spongy bones. However, the autoclaving procedure did not affect (P > 0.05) compressive strength, regardless of the bone type. The teeth area covered by calculus of dogs that were offered ACB reduced from 41% to 32% in 5 days, and at the end of 15 days a reduction of 62.2% was observed, resulting in a remaining of 15.5% of teeth area covered by calculus. In this group, the dental calculus area reduced by 57.7% after 5 days, and at the end of the trial, only 5.4% of teeth were still covered by calculus, which represents a reduction of 81%. The linear regression analysis revealed no significant difference between the slopes for the ACB and ASB equations (P > 0.05). No health complications such as tooth fracture, intestinal obstructions, and oral lesions were observed throughout the study. Our results demonstrated that the autoclave processing did not impair compressive strength of spongy and cortical bones. This corroborates with the results observed in vivo, which suggests that autoclaved bones are chewing agents for adult dogs with additional benefits of lower risk of bacterial contamination.

2.
J Anim Sci ; 95(2): 752-760, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28380617

RESUMEN

Glycerol is a humectant, which reduces water activity when added to the diet. This property seems to offer dietary benefits, specifically in high-moisture diets for cats, where some humectants cannot be used. According to the U.S. Food and Drug Administration, glycerol is generally recognized as sustenance safe (GRAS). It is suggested that cats are able to metabolize glycerol and use it as an energy source without compromising health. Three experiments were conducted to evaluate the following characteristics of glycerol in the diet for cats: 1) a preference test, 2) digestibility, ME, and fecal and urinary characteristics, and 3) postprandial plasma glycemia. Twelve healthy adult female cats were randomly distributed among 4 treatments consisting of a basal diet (4,090 kcal ME/kg DM, 32% CP, 11% fat, 2.3% crude fiber, and 7.0% ash) and 3 diets with varying percentages of glycerol, made by replacing the basal diet with 2.5, 5.0, and 10.0% purified glycerol (99.5%). The inclusion of glycerol proportionally reduced ( < 0.05) water activity in the diets. The preference test was conducted by observing the contrast between the basal diet and the 5.0% and 10% glycerol diets. Cats did not show a preference for any diet in particular ( > 0.05). The digestibility assays showed that increasing dietary glycerol levels did not affect food intake or the apparent total tract digestibility of macronutrients and energy ( > 0.05). The inclusion of glycerol in the diets did not alter the stool moisture, fecal score, or urine volume. However, glycerol was detected in urine when it was incorporated into the diet at 10%. Glycemia increased up to 900 min following the first meal after the fasting period with no difference between treatments, even when the means were adjusted for food intake. The blood glucose area under the curve also showed no significant difference between treatments ( > 0.05). Cats accepted glycerol under the conditions of the study, and its nutritional value was determined as it has been done for other species. The ME of glycerol for adult cats was estimated to be 3,185 kcal/kg DM. Supplementing the diets of the cats with 10% glycerol may exceed their capacity to metabolize glycerol, possibly leading to urinary excretions.


Asunto(s)
Alimentación Animal/análisis , Gatos/fisiología , Dieta/veterinaria , Digestión/fisiología , Metabolismo Energético/fisiología , Glicerol/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Glucemia , Suplementos Dietéticos , Ingestión de Alimentos , Heces , Conducta Alimentaria , Femenino , Glicerol/química , Valor Nutritivo , Periodo Posprandial
3.
Aust Vet J ; 94(1-2): 18-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26814157

RESUMEN

OBJECTIVE: Evaluate the effect of raw bovine cortical bone (CB) (medullary bone cross-sectioned) and marrow or epiphyseal 'spongy' bone (SB) as chew items to reduce dental calculus in adult dogs. METHODS: Eight 3-year-old Beagle dogs were observed in two study periods. In the first study, the dogs each received a piece of bovine femur CB (122 ± 17 g) daily and in the second study, a piece of bovine femur SB (235 ± 27 g). The first study lasted 12 days and the second 20 days. Dental calculus was evaluated using image integration software. RESULTS: At the start of the studies, dental calculus covered 42.0% and 38.6% of the dental arcade areas, respectively. In study one, the chewing reduced the established dental calculus area to 27.1% (35.5% reduction) after 3 days and after 12 days the dental calculus covering was reduced to 12.3% (70.6% reduction). In study two, the dental calculus covered 16.8% (56.5% reduction) after 3 days, 7.1% (81.6% reduction) after 12 days and 4.7% (87.8% reduction) after 20 days. The CB remained largely intact after 24 h, but SB was reduced to smaller pieces and in some cases totally consumed after 24 h. No complications such as tooth fractures, pieces of bone stuck between teeth or intestinal obstructions were observed during the studies. CONCLUSIONS: Chewing raw bovine bones was an effective method of removing dental calculus in dogs. The SB bones removed dental calculus more efficiently in the short term.


Asunto(s)
Alimentación Animal , Cálculos Dentales/veterinaria , Perros , Alimentos Crudos , Animales , Huesos , Cálculos Dentales/prevención & control , Masticación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...