Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Sports Act Living ; 5: 1087995, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255730

RESUMEN

Objectives: The present study aimed to assess the perception and change of mental and physical fatigue and to examine acute effects of mental recovery strategies in air rifle athletes across simulated competition days with two consecutive competition bouts. Design: We conducted a randomized counterbalanced crossover study. Method: 22 development air rifle athletes (Mage = 17.77 ± 4.0) of a regional squad participate in the study. The Short Recovery and Stress Scale (SRSS), perception of mental fatigue, physical fatigue, concentration and motivation as well as differential Ratings of Perceived Exertion (RPE) were used to assess recovery-stress states and fatigue states. During a recovery break, participants underwent two mental recovery strategies (powernap, systematic breathing) or a control condition. Total shooting scores were recorded for both competition bouts. Results: Study results revealed a significant increase of post ratings for mental (p < .001) and physical fatigue (p < .001) for both competition bouts. The correlation coefficient between change in mental and physical fatigue for both competitions revealed a shared variance of 7.9% and 18.6%, respectively. No significant group-based acute effects of the use of mental recovery strategies on shooting performance, and psychological and perceptual measures were found. On an individual level, results illustrated statistical relevant improvements of shooting performance after powernapping or systematic breathing. Conclusion: Mental and physical fatigue increased and accumulated across a simulated air rifle competition and mental fatigue emerged as a separate construct from physical fatigue. The use of strategies to accelerate mental recovery on an individual level (e.g., powernap, systematic breathing) may be a first step to manage a state of mental fatigue, but further studies on mental recovery strategies in an applied setting are needed.

2.
Eur J Sport Sci ; 23(9): 1829-1837, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36226544

RESUMEN

Recently an individualisation algorithm has been developed and shown to significantly improve the diagnostic accuracy of creatine kinase (CK) and urea in endurance sports and Badminton. In this study, the applicability and benefit of this algorithm was evaluated using repeated measures data from 161 professional German soccer players monitored during the 2015-2017 seasons. Venous blood samples were collected after a day off (recovered state) and after a minimum of two strenuous training sessions within 48 h (non-recovered state) and analysed for CK and urea. Group-based reference ranges were derived from that same dataset to ensure the best possible reference for comparison. A z-test was conducted to analyse differences in error rates between individualised and group-based classifications. CK values for the individualised approach showed significantly lower error rates in the assessment of muscle recovery compared to both a population-based (p < .001; z-value: -17.01; test-pass error rate: 21 vs. 67%; test-fail: 19 vs. 64%) and a group-based cut-off (p < .001; z-value: -15.29; test-pass error rate: 65%; test-fail: 67%). It could be concluded that the assessment of muscle recovery in soccer using individualised interpretations of blood-borne markers may offer higher diagnostic accuracy than a population-based and a sample-specific group-based approach.HighlightsAssessing muscle recovery via CK using individualised ranges seems to offer a higher diagnostic accuracy than a sample-specific group-based analysis.Using an individualised algorithm seems to be a promising approach to overcome diagnostic problems arising from large inter- and intraindividual variability in blood parameters as it significantly improved the diagnostic accuracy of CK as a recovery marker.As recovery assessment in elite soccer ultimately aims at the accurate detection of differences in the individual player this algorithm seems to offer coaches and sport scientists a more sensitive approach compared to group-specific evaluations.


Asunto(s)
Fútbol , Deportes , Humanos , Fútbol/fisiología , Valores de Referencia , Músculos , Creatina Quinasa , Urea
3.
Eur J Sport Sci ; 22(7): 973-984, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34075857

RESUMEN

The aim of this study was to investigate the effects of a mixed-method recovery intervention (MMR) consisting of active recovery, stretching, cold-water immersion, and massage on physical, technical, physiological, and perceptual recovery during and after a five-day simulated tennis tournament. Nine competitive male tennis players (age, 24.6±4.2 years) with national ranking positions (German Tennis Federation) and Universal Tennis Ratings between approximately 11-13 participated in two singles tennis tournaments, which were separated by a three-month washout period. During the tournaments, participants played five two-and-a-half-hour competitive singles tennis match on five consecutive days. For the assignment to one of two groups, athletes were matched into homogeneous pairs according to their ranking. Then, within each pair, the players were randomly assigned to one of two groups. The first group performed MMR during the first tournament, whereas the other group used passive recovery (PAS). During the second tournament, recovery conditions were interchanged. Measures of physical and technical performance as well as physiological and perceptual responses (heart rate, blood lactate concentration, perceived exertion) were recorded during match-play sessions. Furthermore, muscle soreness, perceived recovery state, blood markers, countermovement jump height (CMJ), and repeated sprint ability (RSA) were determined before, during, and after the five-day tournament periods. Results showed significant changes over time (P < 0.05) in muscle soreness, perceived recovery state, creatine kinase, c-reactive protein, insulin-like growth factor 1, and countermovement jump height. However, no significant differences or recovery strategy x time interactions were noted either for tennis-specific performance (e.g. number of total points won) or any other of the measured parameters between MMR and PAS (P > 0.05). In conclusion, the repeated use of MMR during and after a five-day tennis tournament did not affect match performance, match load, or recovery from repeated days of tennis match play.


Asunto(s)
Rendimiento Atlético , Tenis , Adulto , Rendimiento Atlético/fisiología , Humanos , Inmersión , Masculino , Masaje , Mialgia/terapia , Tenis/fisiología , Agua , Adulto Joven
4.
Front Physiol ; 12: 665204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566669

RESUMEN

The aim of this study was to investigate whether recovery from eccentric squat exercise varies depending on age and to assess whether the use of a mixed-method recovery (MMR) consisting of cold water immersion and compression tights benefits recovery. Sixteen healthy and resistance-trained young (age, 22.1±2.1years; N=8) and master male athletes (age, 52.4±3.5years; N=8), who had a similar half squat 1-repetition maximum relative to body weight, completed two identical squat exercise training sessions, separated by a 2-week washout period. Training sessions were followed by either MMR or passive recovery (PR). Internal training loads [heart rate and blood lactate concentration (BLa)] were recorded during and after squat sessions. Furthermore, maximal voluntary isometric contraction (MVIC) force, countermovement jump (CMJ) height, resting twitch force of the knee extensors, serum concentration of creatine kinase (CK), muscle soreness (MS), and perceived physical performance capability (PPC) were determined before and after training as well as after 24, 48, and 72h of recovery. A three-way mixed ANOVA revealed a significant time effect of the squat protocol on markers of fatigue and recovery (p<0.05; decreased MVIC, CMJ, twitch force, and PPC; increased CK and MS). Age-related differences were found for BLa, MS, and PPC (higher post-exercise fatigue in younger athletes). A significant two-way interaction between recovery strategy and time of measurement was found for MS and PPC (p<0.05; faster recovery after MMR). In three participants (two young and one master athlete), the individual results revealed a consistently positive response to MMR. In conclusion, master athletes neither reach higher fatigue levels nor recover more slowly than the younger athletes. Furthermore, the results indicate that MMR after resistance exercise does not contribute to a faster recovery of physical performance, neuromuscular function, or muscle damage, but promotes recovery of perceptual measures regardless of age.

5.
Artículo en Inglés | MEDLINE | ID: mdl-34072201

RESUMEN

The purpose of this study was to investigate blood-based biomarkers and their regulation with regard to different recovery-stress states. A total of 35 male elite athletes (13 badminton, 22 soccer players) were recruited, and two venous blood samples were taken: one in a 'recovered' state (REC) after a minimum of one-day rest from exercise and another one in a 'non-recovered' state (NOR) after a habitual loading microcycle. Overall, 23 blood-based biomarkers of different physiologic domains, which address inflammation, muscle damage, and tissue repair, were analyzed by Luminex assays. Across all athletes, only creatine kinase (CK), interleukin (IL-) 6, and IL-17A showed higher concentrations at NOR compared to REC time points. In badminton players, higher levels of CK and IL-17A at NOR were found. In contrast, a higher value for S100 calcium-binding protein A8 (S100A8) at REC was found in badminton players. Similar differences were found for BDNF in soccer players. Soccer players also showed increased levels of CK, and IL-6 at NOR compared to REC state. Several molecular markers were shown to be responsive to differing recovery-stress states, but their suitability as biomarkers in training must be further validated.


Asunto(s)
Fútbol , Atletas , Biomarcadores , Creatina Quinasa , Ejercicio Físico , Humanos , Masculino
6.
Int J Sports Physiol Perform ; 16(8): 1160­1168, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33607623

RESUMEN

PURPOSE: To identify whether the use of active recovery (ACT) the day after high-intensity interval training (HIIT) benefits recovery and to assess whether individual responses to ACT are repeatable. METHODS: Eleven well-trained, male intermittent-sport athletes (age: 25.5 ± 1.8 y) completed 4 HIIT sessions, each separated by a 2-week washout period. Of the 4 sessions, 2 were followed by passive recovery (PAS) and 2 by 60 minutes of moderate biking (ACT) 24 hours postexercise in the following sequences: ACT→PAS→ACT→PAS or PAS→ACT→PAS→ACT. Before and after HIIT and after 24 and 48 hours of recovery, maximal voluntary isometric strength (MVIC), countermovement jump height (CMJ), tensiomyographic markers of muscle fatigue (TMG), serum concentration of creatine kinase (CK), muscle soreness (MS), and perceived stress state (PS) were determined. RESULTS: A 3-way repeated-measure analysis of variance with a triple-nested random effects model revealed a significant (P < .05) fatigue-related time effect of HIIT on markers of fatigue (MVIC↓; CMJ↓; TMG↑; CK↑; MS↑; PS↑). No significant (P > .05) main effect of recovery strategy was detected. In 9 subjects, the individual results revealed inconsistent and nonrepeatable responses to ACT, while a consistent and repeatable positive or negative response to ACT was found in 2 individuals. CONCLUSIONS: The repeated failure of ACT to limit the severity of fatigue was found both at the group level and with most individuals. However, a small percentage of athletes may be more likely to benefit repeatedly from either ACT or PAS. Therefore, the use of ACT should be individualized.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Adulto , Creatina Quinasa , Estudios Cruzados , Humanos , Masculino , Fatiga Muscular/fisiología , Mialgia , Adulto Joven
7.
J Sports Med Phys Fitness ; 61(3): 372-379, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32693563

RESUMEN

BACKGROUND: The aim of this crossover study was to investigate whether a cooling intervention during simulated tennis match play in the heat could affect players' performance, physiology, perception of effort, and well-being. METHODS: Eight competitive male tennis players performed two testing sessions of 45-minute simulated tennis match play on a hard court at 31.8±2.1°C and 48.5±9.6% relative humidity. During change-of-end breaks, the cooling interventions (COL) consisted of cold-water ingestion (ad libitum) and an electric fan facing the players at a distance of 1 m combined with an ice-filled damp towel around the neck and on the thighs or no cooling (CON) were applied. Measures of performance, heart rate, blood lactate concentration, tympanic and local skin temperature, sweat loss, perceived exertion, and thermal sensation as well as ratings of recovery were recorded in both sessions. RESULTS: Paired-samples t-tests showed no significant differences (P>0.05) in any of the measures between COL and CON. Effect size (ES) calculations indicated moderate evidence that COL was beneficial to local skin temperature (ES=-0.95) and thermal sensation (ES=-0.77). At the individual level, a positive response to COL was found in some players for heart rate, local skin temperature, thermal sensation, and ratings of recovery. CONCLUSIONS: A likely inability of COL to improve players' performance or reduce thermal strain during tennis match play in hot humid conditions was found at the group level. However, some players may be more likely to benefit from COL. Therefore, the use of COL should be individualized.


Asunto(s)
Rendimiento Atlético/fisiología , Tenis/fisiología , Adulto , Frío , Estudios Cruzados , Frecuencia Cardíaca , Calor , Humanos , Masculino , Temperatura Cutánea , Sudoración , Agua
8.
Int J Sports Physiol Perform ; 16(2): 304-310, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33217726

RESUMEN

PURPOSE: Cold-water immersion is increasingly used by athletes to support performance recovery. Recently, however, indications have emerged suggesting that the regular use of cold-water immersion might be detrimental to strength training adaptation. METHODS: In a randomized crossover design, 11 participants performed two 8-week training periods including 3 leg training sessions per week, separated by an 8-week "wash out" period. After each session, participants performed 10 minutes of either whole-body cold-water immersion (cooling) or passive sitting (control). Leg press 1-repetition maximum and countermovement jump performance were determined before (pre), after (post) and 3 weeks after (follow-up) both training periods. Before and after training periods, leg circumference and muscle thickness (vastus medialis) were measured. RESULTS: No significant effects were found for strength or jump performance. Comparing training adaptations (pre vs post), small and negligible negative effects of cooling were found for 1-repetition maximum (g = 0.42; 95% confidence interval [CI], -0.42 to 1.26) and countermovement jump (g = 0.02; 95% CI, -0.82 to 0.86). Comparing pre versus follow-up, moderate negative effects of cooling were found for 1-repetition maximum (g = 0.71; 95% CI, -0.30 to 1.72) and countermovement jump (g = 0.64; 95% CI, -0.36 to 1.64). A significant condition × time effect (P = .01, F = 10.00) and a large negative effect of cooling (g = 1.20; 95% CI, -0.65 to 1.20) were observed for muscle thickness. CONCLUSIONS: The present investigation suggests small negative effects of regular cooling on strength training adaptations.


Asunto(s)
Adaptación Fisiológica , Frío , Inmersión , Fuerza Muscular , Entrenamiento de Fuerza , Atletas , Estudios Cruzados , Humanos , Músculo Esquelético/fisiología , Agua
9.
PLoS One ; 15(12): e0244412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33347512

RESUMEN

PURPOSE: To investigate short-term training and recovery-related effects on heart rate during a standardized submaximal running test. METHODS: Ten elite badminton players (7 females and 3 males) were monitored during a 12-week training period in preparation for the World Championships. Exercise heart rate (HRex) and perceived exertion were measured in response to a 5-min submaximal shuttle-run test during the morning session warm-up. This test was repeatedly performed on Mondays after 1-2 days of pronounced recovery ('recovered' state; reference condition) and on Fridays following 4 consecutive days of training ('strained' state). In addition, the serum concentration of creatine kinase and urea, perceived recovery-stress states, and jump performance were assessed before warm-up. RESULTS: Creatine kinase increased in the strained compared to the recovered state and the perceived recovery-stress ratings decreased and increased, respectively (range of average effects sizes: |d| = 0.93-2.90). The overall HRex was 173 bpm and the observed within-player variability (i.e., standard deviation as a coefficient of variation [CV]) was 1.3% (90% confidence interval: 1.2% to 1.5%). A linear reduction of -1.4% (-3.0% to 0.3%) was observed in HRex over the 12-week observational period. HRex was -1.5% lower (-2.2% to -0.9%) in the strained compared to the recovered state, and the standard deviation (as a CV) representing interindividual variability in this response was 0.7% (-0.6% to 1.2%). CONCLUSIONS: Our findings suggest that HRex measured during a standardized warm-up can be sensitive to short-term accumulation of training load, with HRex decreasing on average in response to consecutive days of training within repeated preparatory weekly microcycles. From a practical perspective, it seems advisable to determine intra-individual recovery-strain responses by repeated testing, as HRex responses may vary substantially between and within players.


Asunto(s)
Creatina Quinasa/sangre , Acondicionamiento Físico Humano/fisiología , Urea/sangre , Ejercicio de Calentamiento/fisiología , Adulto , Rendimiento Atlético , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Esfuerzo Físico , Adulto Joven
10.
Front Psychol ; 11: 558856, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424674

RESUMEN

Both daily demands as well as training and competition characteristics in sports can result in a psychobiological state of mental fatigue leading to feelings of tiredness, lack of energy, an increased perception of effort, and performance decrements. Moreover, optimal performance will only be achievable if the balance between recovery and stress states is re-established. Consequently, recovery strategies are needed aiming at mental aspects of recovery. The aim of the study was to examine acute effects of potential mental recovery strategies (MR) on subjective-psychological and on cognitive performance outcomes after a mentally fatiguing task. A laboratory-based randomized cross-over study with twenty-four students (22.8 ± 3.6 years) was applied. Participants were run through a powernap intervention (PN), a systematic breathing intervention (SB), a systematic breathing plus mental imagery intervention (SB+), and a control condition (CC) with one trial a week over four consecutive weeks. Mental fatigue was induced by completion of the 60-min version of the AX-continuous performance test (AX-CPT). The Short Recovery and Stress Scale (SRSS) and Visual Analog Scales (VAS) were assessed to measure effects on perceptual outcomes. Cognitive performance was measured with a reaction time test of the Vienna Test System (VTS). During all three recovery interventions and CC portable polysomnography was applied. Results showed a significant increase from pre-AX-CPT to pre-MR on fatigue states and recovery-stress states indicating that the induction of mental fatigue was effective. Moreover, results underlined that analysis yielded no significant differences between recovery interventions and the control condition but they revealed significant time effects for VAS, SRSS items, and cognitive performance. However, it could be derived that the application of a rest break with 20 min of mental recovery strategies appears to enhance recovery on a mainly mental and emotional level and to reduce perceived mental fatigue.

11.
Eur J Sport Sci ; 20(6): 713-721, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31456506

RESUMEN

Current sport-scientific studies mostly neglect the assessment of sleep architecture, although the distribution of different sleep stages is considered an essential component influencing an athlete's recovery and performance capabilities. A mobile, self-applied tool like the SOMNOwatch plus EEG might serve as an economical and time-friendly alternative to activity-based devices. However, self-application of SOMNOwatch plus EEG has not been validated against conventional polysomnography (PSG) yet. For evaluation purposes, 25 participants (15 female, 10 male; M age = 22.92 ± 2.03 years) slept in a sleep laboratory on two consecutive nights wearing both, conventional PSG and SOMNOwatch plus EEG electrodes. Sleep parameters and sleep stages were compared using paired t-tests and Bland-Altman plots. No significant differences were found between the recordings for Sleep Onset Latency, stages N1 to N3 as well as Rapid Eye Movement stage. Significant differences (Bias [95%-confidence interval]) were present between Total Sleep Time (9.95 min [-29.18, 49.08], d = 0.14), Total Wake Time (-13.12 min [-47.25, 23.85], d = -0.28), Wake after Sleep Onset (-11.70 min [-47.25, 23.85], d = -0.34) and Sleep Efficiency (2.18% [-7.98, 12.34], d = 0.02) with small effect sizes. Overall, SOMNOwatch plus EEG can be considered a valid and practical self-applied method for the examination of sleep. In sport-scientific research, it is a promising tool to assess sleep architecture in athletes; nonetheless, it cannot replace in-lab PSG for all clinical or scientific purposes.


Asunto(s)
Atletas , Electroencefalografía/instrumentación , Polisomnografía/instrumentación , Fases del Sueño/fisiología , Dispositivos Electrónicos Vestibles , Adulto , Intervalos de Confianza , Electrodos , Femenino , Humanos , Masculino , Latencia del Sueño/fisiología , Sueño REM/fisiología , Factores de Tiempo , Adulto Joven
12.
Int J Sports Physiol Perform ; 15(7): 934-940, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31869820

RESUMEN

PURPOSE: Despite indications of positive effects of sauna (SAU) interventions, effects on performance recovery are unknown. The aim of the current study was to investigate acute effects of SAU bathing after an intensive training session on recovery of swim performance. METHODS: In total, 20 competitive swimmers and triathletes (3 female and 17 male) with a minimum of 2 y of competition experience (national level or higher) participated in the study. Athletes completed an intensive training session followed by either a SAU bathing intervention or a placebo (PLAC) condition in a randomized order. SAU consisted of 3 × 8 min of SAU bathing at 80-85°C, whereas during PLAC, athletes applied a deidentified, pH-balanced massage oil while passively resting in a seated position. Prior to training, swimmers conducted a 4 × 50-m all-out swim test that was repeated on the following morning. Furthermore, subjective ratings of fatigue and recovery were measured. RESULTS: Swimmers performed significantly worse after SAU (4 × 50-m pre-post difference: +1.69 s) than after PLAC (-0.66 s; P = .02), with the most pronounced decrease in the first 50 m (P = .04; +2.7%). Overall performance of 15 athletes deteriorated (+2.6 s). The subjective feeling of stress was significantly higher after SAU than after PLAC (P = .03). CONCLUSION: Based on published findings, the smallest substantial change in swimming performance is an increase in time of more than 1.2 s; thus, the observed reductions appear relevant for competitive swimmers. According to the current results, coaches and athletes should be careful with postexercise SAU if high-intensity training and/or competitions are scheduled on the following day.

13.
Front Physiol ; 10: 1414, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824332

RESUMEN

Despite the general consensus regarding the implementation of self-report measures in the training monitoring, there is a lack of research about their applicability and comprehensibility among developing athletes. However, this target group needs special considerations to manage the increasing training demands while maintaining health and performance. This study deals with challenges of applying recovery-stress questionnaires which were validated with adult populations among developing athletes and presents a possible approach to enhance their applicability. In two phases, the Acute Recovery and Stress Scale (ARSS), a 32-adjective list covering eight scales, and the 8-item derived version, the Short Recovery and Stress Scale (SRSS) were answered by 1052 athletes between 10 and 16 years. Phase 1 included 302 14- to 16-year-old athletes who used the original questionnaires with the additional option to mark "I don't understand," while modified versions with additional explanations (phase 2) were applied to 438 adolescents (14.7 ± 0.6 years) and 312 child athletes (11.8 ± 1.1 years). Data of the original validation sample (n = 442) were reanalyzed to examine measurement invariance between adults and adolescents. The results showed comparable psychometric properties to the validation sample (e.g., r it > 0.30) and acceptable fit indices via confirmatory factor analyses (CFA), although more difficulties and limitations were present within the younger groups (e.g., Cronbach's α between 0.50 and 0.87), especially among 10- and 11-year-olds. The original as well as the modified SRSS, on the other hand, indicated good applicability (Cronbach's α between 0.72 and 0.80). Multigroup CFA revealed measurement invariance of the original ARSS among adults and adolescents and of the modified ARSS among adolescents and children. Overall, the present study confirmed the assumption that questionnaires designed by and for adults cannot be directly transferred to younger athletes. The peculiarities and differences in the cognitive and affective development of each age group need to be considered. Future research needs to identify a cut-off age to start the proper use of psychometric tools, especially for state-oriented assessments for routine application in training monitoring. Further modifications and long-term investigations are necessary to implement psychometric monitoring in high-performance environments within youth sport.

14.
Front Physiol ; 10: 778, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31297063

RESUMEN

Purpose: Individualized reference ranges for serum creatine kinase (CK) and urea are a promising tool for the assessment of recovery status in high-level endurance athletes. In this study, we investigated the application of this approach in racket sports, specifically for the monitoring of elite badminton players during the preparation for their world championships. Methods: Seventeen elite badminton players were enrolled of which 15 could be included in the final analysis. Repeated measurements of CK and urea at recovered (R) and non-recovered (NR) time points were used for the stepwise individualization of group-based, prior reference ranges as well as for the evaluation of classificatory performance. Specifically, blood samples were collected in the morning following a day off (R) or following four consecutive training days (NR), respectively. Group based reference ranges were derived from the same data. Error rates were compared between the group-based and individualized approaches using the Fisher exact test. Results: Error rates were numerically lower for the individualized as compared to the group-based approach in all cases. Improvements reached statistical significance for urea (test-pass error rate: p = 0.007; test-fail error rate: p = 0.002) but not for CK (p vs. group-based: test-pass error rate: p = 0.275, test-fail error rate: p = 0.291). Regardless of the chosen approach, the use of CK was associated with lower error rates as compared to urea. Conclusion and Practical Applications: Individualized reference ranges seem to offer diagnostic benefits in the monitoring of muscle recovery in elite badminton. The lack of significant improvements in error rates for CK is likely due to the large difference between R and NR for this parameter with error rates that are already low for the group-based approach.

15.
Front Physiol ; 10: 582, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178746

RESUMEN

Objective: In two independent study arms, we determine the effects of strength training (ST) and high-intensity interval training (HIIT) overload on cardiac autonomic modulation by measuring heart rate (HR) and vagal heart rate variability (HRV). Methods: In the study, 37 well-trained athletes (ST: 7 female, 12 male; HIIT: 9 female, 9 male) were subjected to orthostatic tests (HR and HRV recordings) each day during a 4-day baseline period, a 6-day overload microcycle, and a 4-day recovery period. Discipline-specific performance was assessed before and 1 and 4 days after training. Results: Following ST overload, supine HR, and vagal HRV (Ln RMSSD) were clearly increased and decreased (small effects), respectively, and the standing recordings remained unchanged. In contrast, HIIT overload resulted in decreased HR and increased Ln RMSSD in the standing position (small effects), whereas supine recordings remained unaltered. During the recovery period, these responses were reversed (ST: small effects, HIIT: trivial to small effects). The correlations between changes in HR, vagal HRV measures, and performance were weak or inconsistent. At the group and individual levels, moderate to strong negative correlations were found between HR and Ln RMSSD when analyzing changes between testing days (ST: supine and standing position, HIIT: standing position) and individual time series, respectively. Use of rolling 2-4-day averages enabled more precise estimation of mean changes with smaller confidence intervals compared to single-day values of HR or Ln RMSSD. However, the use of averaged values displayed unclear effects for evaluating associations between HR, vagal HRV measures, and performance changes, and have the potential to be detrimental for classification of individual short-term responses. Conclusion: Measures of HR and Ln RMSSD during an orthostatic test could reveal different autonomic responses following ST or HIIT which may not be discovered by supine or standing measures alone. However, these autonomic changes were not consistently related to short-term changes in performance and the use of rolling averages may alter these relationships differently on group and individual level.

16.
Front Physiol ; 10: 376, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024339

RESUMEN

Foam rolling is thought to improve muscular performance and flexibility as well as to alleviate muscle fatigue and soreness. For this reason, foam rolling has become a popular intervention in all kinds of sport settings used to increase the efficiency of training or competition preparation as well as to speed post-exercise recovery. The objective of this meta-analysis was to compare the effects of foam rolling applied before (pre-rolling as a warm-up activity) and after (post-rolling as a recovery strategy) exercise on sprint, jump, and strength performance as well as on flexibility and muscle pain outcomes and to identify whether self-massage with a foam roller or a roller massager is more effective. A comprehensive and structured literature search was performed using the PubMed, Google Scholar, PEDro, and Cochrane Library search engines. Twenty-one studies were located that met the inclusion criteria. Fourteen studies used pre-rolling, while seven studies used post-rolling. Pre-rolling resulted in a small improvement in sprint performance (+0.7%, g = 0.28) and flexibility (+4.0%, g = 0.34), whereas the effect on jump (-1.9%, g = 0.09) and strength performance (+1.8%, g = 0.12) was negligible. Post-rolling slightly attenuated exercise-induced decreases in sprint (+3.1%, g = 0.34) and strength performance (+3.9 %, g = 0.21). It also reduced muscle pain perception (+6.0%, g = 0.47), whereas its effect on jump performance (-0.2%, g = 0.06) was trivial. Of the twenty-one studies, fourteen used foam rollers, while the other seven used roller massage bars/sticks. A tendency was found for foam rollers to offer larger effects on the recovery of strength performance (+5.6%, g = 0.27 vs. -0.1%, g = -0.01) than roller massagers. The differences in the effects between foam rolling devices in terms of pre-rolling did not seem to be of practical relevance (overall performance: +2.7 %, g = 0.11 vs. +0.4%, g = 0.21; flexibility: +5.0%, g = 0.32 vs. +1.6%, g = 0.39). Overall, it was determined that the effects of foam rolling on performance and recovery are rather minor and partly negligible, but can be relevant in some cases (e.g., to increase sprint performance and flexibility or to reduce muscle pain sensation). Evidence seems to justify the widespread use of foam rolling as a warm-up activity rather than a recovery tool.

17.
PLoS One ; 13(11): e0207313, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30412626

RESUMEN

PURPOSE: To investigate the effects of different recovery strategies on fatigue markers following a prolonged running exercise. METHODS: 46 recreational male runners completed a half-marathon, followed by active recovery (ACT), cold water immersion (CWI), massage (MAS) or passive recovery (PAS). Countermovement jump height, muscle soreness and perceived recovery and stress were measured 24h before the half-marathon (pre), immediately after the recovery intervention (postrec) and 24h after the race (post24). In addition, muscle contractile properties and blood markers of fatigue were determined at pre and post24. RESULTS: Magnitude-based inferences revealed substantial differences in the changes between the groups. At postrec, ACT was harmful to perceived recovery (ACT vs. PAS: effect size [ES] = -1.81) and serum concentration of creatine kinase (ACT vs. PAS: ES = 0.42), with CWI being harmful to jump performance (CWI vs. PAS: ES = -0.98). It was also beneficial for reducing muscle soreness (CWI vs. PAS: ES = -0.88) and improving perceived stress (CWI vs. PAS: ES = -0.64), with MAS being beneficial for reducing muscle soreness (MAS vs. PAS: ES = -0.52) and improving perceived recovery (MAS vs. PAS: ES = 1.00). At post24, both CWI and MAS were still beneficial for reducing muscle soreness (CWI vs. PAS: ES = 1.49; MAS vs. PAS: ES = 1.12), with ACT being harmful to perceived recovery (ACT vs. PAS: ES = -0.68), serum concentration of creatine kinase (ACT vs. PAS: ES = 0.84) and free-testosterone (ACT vs. PAS: ES = -0.91). CONCLUSIONS: In recreational runners, a half-marathon results in fatigue symptoms lasting at least 24h. To restore subjective fatigue measures, the authors recommend CWI and MAS, as these recovery strategies are more effective than PAS, with ACT being even disadvantageous. However, runners must be aware that neither the use of ACT nor CWI or MAS had any beneficial effect on objective fatigue markers.


Asunto(s)
Fatiga Muscular , Carrera , Adulto , Biomarcadores/sangre , Femenino , Humanos , Masculino
18.
Front Physiol ; 9: 845, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30026704

RESUMEN

Background: The relation between training load, especially internal load, and the recovery-stress state is of central importance for avoiding negative adaptations in high-performance sports like swimming. The aim of this study was to analyze the individual time-delayed linear effect relationship between training load and recovery-stress state with single case time series methods and to monitor the acute recovery-stress state of high-performance swimmers in an economical and multidimensional manner over a macro cycle. The Acute Recovery and Stress Scale (ARSS) was used for daily monitoring of the recovery-stress state. The methods session-RPE (sRPE) and acute:chronic workload-ratio (ACWR) were used to compare different methods for quantifying the internal training load with regard to their interrelationship with the recovery-stress state. Methods: Internal load and recovery-stress state of five highly trained female swimmers [with a training frequency of 13.6 ± 0.8 sessions per week and specializing in sprint (50 and 100 m), middle-distance (200 and 400 m), or long distance (800 and 1,500 m) events] were daily documented over 17 weeks. Two different types of sRPE were applied: RPE∗duration (sRPEh) and RPE∗volume (sRPEkm). Subsequently, we calculated the ratios ACWRh and ACWRkm (sRPE last week: 4-week exponentially weighted moving average). The recovery-stress state was measured by using the ARSS, consisting of eight scales, four of which are related to recovery [Physical Performance Capability (PPC), Mental Performance Capability (MPC), Emotional Balance (EB), Overall Recovery (OR)], and four to stress [Muscular Stress (MS), Lack of Activation (LA), Negative Emotional State (NES), Overall Stress (OS)]. To examine the relation between training load and recovery-stress state a cross correlation (CCC) was conducted with sRPEh, sRPEkm, ACWRh, and ACWRkm as lead and the eight ARSS-scales as lag variables. Results: A large variation of training load can be observed in the individual week-to-week fluctuations whereby the single fluctuations can significantly differ from the overall mean of the group. The range also shows that the CCC individually reaches values above 0.3, especially with sRPEkm as lead variable. Overall, there is a large range with significant differences between the recovery and stress dimensions of the ARSS and between the training load methods, with sRPEkm having the largest span (Range = 1.16). High inter-individual differences between the athletes lie in strength and direction of the correlation | 0.66|≤ CCC ≥|-0.50|. The time delayed effects (lags 0-7) are highly individual, however, clear patterns can be observed. Conclusion: The ARSS, especially the physical and overall-related scales (PPC, OR, MS, OS), is a suitable tool for monitoring the acute recovery-stress state in swimmers. MPC, EB, LA, and NES are less affected by training induced changes. Comparably high CCC and Ranges result from the four internal load methods, whereby sRPE, especially sRPEkm, shows a stronger relation to recovery-stress state than ACWR. Based on these results and the individual differences in terms of time delay in training response, we recommend for swimming to use sRPE to monitor the internal training load and to use the ARSS, with a focus at the physical and overall-scales, to monitor the recovery-stress state.

19.
Front Physiol ; 9: 639, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29904351

RESUMEN

A comprehensive monitoring of fitness, fatigue, and performance is crucial for understanding an athlete's individual responses to training to optimize the scheduling of training and recovery strategies. Resting and exercise-related heart rate measures have received growing interest in recent decades and are considered potentially useful within multivariate response monitoring, as they provide non-invasive and time-efficient insights into the status of the autonomic nervous system (ANS) and aerobic fitness. In team sports, the practical implementation of athlete monitoring systems poses a particular challenge due to the complex and multidimensional structure of game demands and player and team performance, as well as logistic reasons, such as the typically large number of players and busy training and competition schedules. In this regard, exercise-related heart rate measures are likely the most applicable markers, as they can be routinely assessed during warm-ups using short (3-5 min) submaximal exercise protocols for an entire squad with common chest strap-based team monitoring devices. However, a comprehensive and meaningful monitoring of the training process requires the accurate separation of various types of responses, such as strain, recovery, and adaptation, which may all affect heart rate measures. Therefore, additional information on the training context (such as the training phase, training load, and intensity distribution) combined with multivariate analysis, which includes markers of (perceived) wellness and fatigue, should be considered when interpreting changes in heart rate indices. The aim of this article is to outline current limitations of heart rate monitoring, discuss methodological considerations of univariate and multivariate approaches, illustrate the influence of different analytical concepts on assessing meaningful changes in heart rate responses, and provide case examples for contextualizing heart rate measures using simple heuristics. To overcome current knowledge deficits and methodological inconsistencies, future investigations should systematically evaluate the validity and usefulness of the various approaches available to guide and improve the implementation of decision-support systems in (team) sports practice.

20.
Front Physiol ; 9: 415, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29720949

RESUMEN

Objective: High-intensity interval training (HIIT) can be extremely demanding and can consequently produce high blood lactate levels. Previous studies have shown that lactate is a potent metabolic stimulus, which is important for adaptation. Active recovery (ACT) after intensive exercise, however, enhances blood lactate removal in comparison with passive recovery (PAS) and, consequently, may attenuate endurance performance improvements. Therefore, the aim of this study was to examine the influence of regular ACT on training adaptations during a HIIT mesocycle. Methods: Twenty-six well-trained male intermittent sport athletes (age: 23.5 ± 2.5 years; O2max: 55.36 ± 3.69 ml min kg-1) participated in a randomized controlled trial consisting of 4 weeks of a running-based HIIT mesocycle with a total of 12 HIIT sessions. After each training session, participants completed 15 min of either moderate jogging (ACT) or PAS. Subjects were matched to the ACT or PAS groups according to age and performance. Before the HIIT program and 1 week after the last training session, the athletes performed a progressive incremental exercise test on a motor-driven treadmill to determine O2max, maximum running velocity (vmax), the running velocity at which O2max occurs (vO2max), and anaerobic lactate threshold (AT). Furthermore, repeated sprint ability (RSA) were determined. Results: In the whole group the HIIT mesocycle induced significant or small to moderate changes in vmax (p < 0.001, effect size [ES] = 0.65,), vO2max (p < 0.001, ES = 0.62), and AT (p < 0.001, ES = 0.56) compared with the values before the intervention. O2max and RSA remained unchanged throughout the study. In addition, no significant differences in the changes were noted in any of the parameters between ACT and PAS except for AT (p < 0.05, ES = 0.57). Conclusion: Regular use of individualized ACT did not attenuate training adaptations during a HIIT mesocycle compared to PAS. Interestingly, we found that the ACT group obtained a significantly higher AT following the training program compared to the PAS group. This could be because ACT allows a continuation of the training at a low intensity and may activate specific adaptive mechanisms that are not triggered during PAS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...