Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 440, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382828

RESUMEN

Master cell fate determinants are thought to induce specific cell lineages in gastrulation by orchestrating entire gene programs. The T-box transcription factor EOMES (eomesodermin) is crucially required for the development of the heart-yet it is equally important for endoderm specification suggesting that it may act in a context-dependent manner. Here, we define an unrecognized interplay between EOMES and the WNT signaling pathway in controlling cardiac induction by using loss and gain-of-function approaches in human embryonic stem cells. Dose-dependent EOMES induction alone can fully replace a cocktail of signaling molecules otherwise essential for the specification of cardiogenic mesoderm. Highly efficient cardiomyocyte programming by EOMES mechanistically involves autocrine activation of canonical WNT signaling via the WNT3 ligand, which necessitates a shutdown of this axis at a subsequent stage. Our findings provide insights into human germ layer induction and bear biotechnological potential for the robust production of cardiomyocytes from engineered stem cells.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Células Madre Pluripotentes/citología , Proteínas de Dominio T Box/genética , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Doxiciclina/administración & dosificación , Doxiciclina/farmacología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Madre Embrionarias Humanas/citología , Humanos , Mesodermo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/efectos de los fármacos , Proteínas de Dominio T Box/metabolismo , Vía de Señalización Wnt , Proteína Wnt3/metabolismo
2.
J Proteome Res ; 15(8): 2407-21, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27225728

RESUMEN

The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.


Asunto(s)
Reprogramación Celular , Oocitos/química , Proteína-Arginina N-Metiltransferasas/fisiología , Factores de Transcripción SOXB1/fisiología , Animales , Cromatografía Liquida , Desarrollo Embrionario , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Ratones , Células Madre Pluripotentes/citología , Proteómica/métodos , Espectrometría de Masas en Tándem
4.
Cell Stem Cell ; 18(3): 341-53, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26748419

RESUMEN

Cardiac induction requires stepwise integration of BMP and WNT pathway activity. Human embryonic stem cells (hESCs) are developmentally and clinically relevant for studying the poorly understood molecular mechanisms downstream of these cascades. We show that BMP and WNT signaling drive cardiac specification by removing sequential roadblocks that otherwise redirect hESC differentiation toward competing fates, rather than activating a cardiac program per se. First, BMP and WNT signals pattern mesendoderm through cooperative repression of SOX2, a potent mesoderm antagonist. BMP signaling promotes miRNA-877 maturation to induce SOX2 mRNA degradation, while WNT-driven EOMES induction transcriptionally represses SOX2. Following mesoderm formation, cardiac differentiation requires inhibition of WNT activity. We found that WNT inhibition serves to restrict expression of anti-cardiac regulators MSX1 and CDX2/1. Conversely, their simultaneous disruption partially abrogates the requirement for WNT inactivation. These results suggest that human cardiac induction depends on multi-stage repression of alternate lineages, with implications for deriving expandable cardiac stem cells.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas/metabolismo , Miocitos Cardíacos/metabolismo , Vía de Señalización Wnt , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Línea Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
5.
Proteomics ; 15(4): 675-87, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367296

RESUMEN

Current models of early mouse development assign roles to stochastic processes and epigenetic regulation, which are considered to be as influential as the genetic differences that exist between strains of the species Mus musculus. The aim of this study was to test whether mouse oocytes vary from each other in the abundance of gene products that could influence, prime, or even predetermine developmental trajectories and features of derivative embryos. Using the paradigm of inbred mouse strains, we quantified 2010 protein groups (SILAC LC-MS/MS) and 15205 transcripts (RNA deep sequencing) present simultaneously in oocytes of four strains tested (129/Sv, C57Bl/6J, C3H/HeN, DBA/2J). Oocytes differed according to donor strain in the abundance of catalytic and regulatory proteins, as confirmed for a subset (bromodomain adjacent to zinc finger domain, 1B [BAZ1B], heme oxygenase 1 [HMOX1], estrogen related receptor, beta [ESRRB]) via immunofluorescence in situ. Given a Pearson's r correlation coefficient of 0.18-0.20, the abundance of oocytic proteins could not be predicted from that of cognate mRNAs. Our results document that a prerequisite to generate embryo diversity, namely the different abundances of maternal proteins in oocytes, can be studied in the model of inbred mouse strains. Thus, we highlight the importance of proteomic quantifications in modern embryology. All MS data have been deposited in the ProteomeXchange with identifier PXD001059 (http://proteomecentral.proteomexchange.org/dataset/PXD001059).


Asunto(s)
Embrión de Mamíferos/metabolismo , Ratones Endogámicos/embriología , Oocitos/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Animales , Embrión de Mamíferos/química , Desarrollo Embrionario/fisiología , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Marcaje Isotópico , Masculino , Espectrometría de Masas , Ratones , Oocitos/química , Oocitos/crecimiento & desarrollo , Proteoma/química , Proteoma/genética , Proteómica , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transcriptoma
6.
Mol Hum Reprod ; 21(2): 115-25, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25239944

RESUMEN

The totipotent zygote gives rise to cells with differing identities during mouse preimplantation development. Many studies have focused on analyzing the spatio-temporal dependencies during these lineage decision processes and much has been learnt by tracing transgenic marker gene expression up to the blastocyst stage and by analyzing the effects of genetic manipulations (knockout/ overexpression) on embryo development. However, until recently, it has not been possible to get broader overviews on the gene expression networks that distinguish one cell from the other within the same embryo. With the advent of whole genome amplification methodology and microfluidics-based quantitative RT-PCR it became possible to generate transcriptomes of single cells. Here we review the current state of the art of single-cell transcriptomics applied to mouse preimplantation embryo blastomeres and summarize findings made by pioneering studies in recent years. Furthermore we use the PluriNetWork and ExprEssence to investigate cell transitions based on published data.


Asunto(s)
Blastómeros/metabolismo , Biología Computacional/métodos , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma/genética , Transcriptoma/fisiología
7.
PLoS One ; 9(5): e97199, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24836291

RESUMEN

Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24-36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1) and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle.


Asunto(s)
Reprogramación Celular/fisiología , Clonación de Organismos/métodos , Replicación del ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Oocitos/fisiología , Animales , Citocinesis/fisiología , Cartilla de ADN/genética , Femenino , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog , Técnicas de Transferencia Nuclear , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena de la Polimerasa , Inyecciones de Esperma Intracitoplasmáticas
8.
Reproduction ; 148(1): 55-72, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24686459

RESUMEN

The long-standing view of 'immortal germline vs mortal soma' poses a fundamental question in biology concerning how oocytes age in molecular terms. A mainstream hypothesis is that maternal ageing of oocytes has its roots in gene transcription. Investigating the proteins resulting from mRNA translation would reveal how far the levels of functionally available proteins correlate with mRNAs and would offer novel insights into the changes oocytes undergo during maternal ageing. Gene ontology (GO) semantic analysis revealed a high similarity of the detected proteome (2324 proteins) to the transcriptome (22 334 mRNAs), although not all proteins had a cognate mRNA. Concerning their dynamics, fourfold changes of abundance were more frequent in the proteome (3%) than the transcriptome (0.05%), with no correlation. Whereas proteins associated with the nucleus (e.g. structural maintenance of chromosomes and spindle-assembly checkpoints) were largely represented among those that change in oocytes during maternal ageing; proteins associated with oxidative stress/damage (e.g. superoxide dismutase) were infrequent. These quantitative alterations are either impoverishing or enriching. Using GO analysis, these alterations do not relate in any simple way to the classic signature of ageing known from somatic tissues. Given the lack of correlation, we conclude that proteome analysis of mouse oocytes may not be surrogated with transcriptome analysis. Furthermore, we conclude that the classic features of ageing may not be transposed from somatic tissues to oocytes in a one-to-one fashion. Overall, there is more to the maternal ageing of oocytes than mere cellular deterioration exemplified by the notorious increase of meiotic aneuploidy.


Asunto(s)
Envejecimiento/metabolismo , Edad Materna , Oocitos/metabolismo , Proteínas/metabolismo , Proteómica , Envejecimiento/genética , Animales , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Mapas de Interacción de Proteínas , Proteínas/genética , Proteómica/métodos , ARN Mensajero/metabolismo
9.
Stem Cells ; 31(11): 2343-53, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23922292

RESUMEN

The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.


Asunto(s)
Reprogramación Celular/fisiología , Células Madre Embrionarias/fisiología , Oocitos/fisiología , Células Madre Pluripotentes/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Transferencia Nuclear , Oocitos/citología , Oocitos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Tetraploidía
10.
PLoS One ; 7(6): e36850, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22693623

RESUMEN

While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.


Asunto(s)
Reprogramación Celular/fisiología , Mitocondrias/metabolismo , Oocitos/citología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Reprogramación Celular/genética , Microscopía por Crioelectrón , Femenino , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/inmunología , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Oocitos/ultraestructura
11.
J Proteome Res ; 10(5): 2140-53, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21344949

RESUMEN

The oocyte is the only cell of the body that can reprogram transplanted somatic nuclei and sets the gold standard for all reprogramming methods. Therefore, an in-depth characterization of its proteome holds promise to advance our understanding of reprogramming and germ cell biology. To date, limitations on oocyte numbers and proteomic technology have impeded this task, and the search for reprogramming factors has been conducted in embryonic stem (ES) cells instead. Here, we present the proteome of metaphase II mouse oocytes to a depth of 3699 proteins, which substantially extends the number of proteins identified until now in mouse oocytes and is comparable by size to the proteome of undifferentiated mouse ES cells. Twenty-eight oocyte proteins, also detected in ES cells, match the criteria of our multilevel approach to screen for reprogramming factors, namely nuclear localization, chromatin modification, and catalytic activity. Our oocyte proteome catalog thus advances the definition of the "reprogrammome", the set of molecules--proteins, RNAs, lipids, and small molecules--that enable reprogramming.


Asunto(s)
Reprogramación Celular/genética , Metafase/genética , Oocitos/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Animales , Cromatografía Liquida , Biología Computacional , Cartilla de ADN/genética , Células Madre Embrionarias/metabolismo , Femenino , Espectrometría de Masas , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Técnicas de Transferencia Nuclear , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Int J Dev Biol ; 54(11-12): 1649-57, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21136379

RESUMEN

Cloned mouse embryo development to blastocyst stage correlates positively with the expression level of Oct4 (Pou5f1) at the morula stage, as reported previously by our laboratory. However, whether this correlation is based on a cause-effect relationship has remained unclear. To address this question, we artificially increased the level of Oct4 prior and subsequent to somatic cell nuclear transfer, by microinjection of Oct4 mRNA into ooplasts and by transgenic Oct4 induction at the morula stage, respectively. We observed higher developmental rates of cloned embryos to blastocyst when higher levels of Oct4 were superimposed with the initial reprogramming events; whereas increasing Oct4 at later stages of preimplantation development did not have a significant effect on developmental rates. Our results show that supplemental Oct4 facilitates oocyte-mediated reprogramming only during the first cleavages, implying that the higher Oct4 level observed in developmentally competent cloned morulae is a readout of reprogramming events that successfully took place earlier.


Asunto(s)
Reprogramación Celular/genética , Embrión de Mamíferos/metabolismo , Mórula/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Blastocisto/metabolismo , Separación Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mórula/metabolismo , Técnicas de Transferencia Nuclear , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA