Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 387(2): 249-260, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34820703

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a complex chronic respiratory disorder often caused by cigarette smoke. Cigarette smoke contains hundreds of toxic substances. In our study, we wanted to identify initial mechanisms of cigarette smoke induced changes in the distal lung. Viable slices of human lungs were exposed 24 h to cigarette smoke condensate, and the dose-response profile was analyzed. Non-toxic condensate concentrations and lipopolysaccharide were used for further experiments. COPD-related protein and gene expression was measured. Cigarette smoke condensate did not induce pro-inflammatory cytokines and most inflammation-associated genes. In contrast, lipopolysaccharide significantly induced IL-1α, IL-1ß, TNF-α and IL-8 (proteins) and IL1B, IL6, and TNF (genes). Interestingly, cigarette smoke condensate induced metabolism- and extracellular matrix-associated proteins and genes, which were not influenced by lipopolysaccharide. Also, a significant regulation of CYP1A1 and CYP1B1, as well as MMP9 and MMP9/TIMP1 ratio, was observed which resembles typical findings in COPD. In conclusion, our data show that cigarette smoke and lipopolysaccharide induce significant responses in human lung tissue ex vivo, giving first hints that COPD starts early in smoking history.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Fumar Cigarrillos/efectos adversos , Matriz Extracelular/metabolismo , Humanos , Inflamación/complicaciones , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
2.
PLoS One ; 13(11): e0207767, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30500834

RESUMEN

Subgroups of patients with severe asthma are insensitive to inhaled corticosteroids and require novel therapies on top of standard medical care. IL-13 is considered one of the key cytokines in the asthma pathogenesis, however, the effect of IL-13 was mostly studied in rodents. This study aimed to assess IL-13 effect in human lung tissue for the development of targeted therapy approaches such as inhibition of soluble IL-13 or its receptor IL-4Rα subunit. Precision-cut lung slices (PCLS) were prepared from lungs of rodents, non-human primates (NHP) and humans. Direct effect of IL-13 on human lung tissue was observed on inflammation, induction of mucin5AC, and airway constriction induced by methacholine and visualized by videomicroscopy. Anti-inflammatory treatment was evaluated by co-incubation of IL-13 with increasing concentrations of IL-13/IL-13 receptor inhibitors. IL-13 induced a two-fold increase in mucin5AC secretion in human bronchial tissue. Additionally, IL-13 induced release of proinflammatory cytokines eotaxin-3 and TARC in human PCLS. Anti-inflammatory treatment with four different inhibitors acting either on the IL-13 ligand itself (anti-IL-13 antibody, similar to Lebrikizumab) or the IL-4Rα chain of the IL-13/IL-4 receptor complex (anti-IL-4Rα #1, similar to AMG 317, and #2, similar to REGN668) and #3 PRS-060 (a novel anticalin directed against this receptor) could significantly attenuate IL-13 induced inflammation. Contrary to this, IL-13 did not induce airway hyperresponsiveness (AHR) in human and NHP PCLS, although it was effective in rodent PCLS. Overall, this study demonstrates that IL-13 stimulation induces production of mucus and biomarkers of allergic inflammation in human lung tissue ex-vivo but no airway hyperresponsiveness. The results of this study show a more distinct efficacy than known from animals models and a clear discrepancy in AHR induction. Moreover, it allows a translational approach in inhibitor profiling in human lung tissue.


Asunto(s)
Antiasmáticos/farmacología , Interleucina-13/farmacología , Pulmón/efectos de los fármacos , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Quimiocina CCL17/metabolismo , Quimiocina CCL26/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/patología , Mucinas/biosíntesis , Receptores de Interleucina-13/metabolismo
3.
J Occup Med Toxicol ; 12: 13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28559920

RESUMEN

BACKGROUND: Investigation of basic chronic inflammatory mechanisms and development of new therapeutics targeting the respiratory tract requires appropriate testing systems, including those to monitor long- persistence. Human precision-cut lung slices (PCLS) have been demonstrated to mimic the human respiratory tract and have potential of an alternative, ex-vivo system to replace or augment in-vitro testing and animal models. So far, most research on PCLS has been conducted for short cultivation periods (≤72 h), while analyses of slowly metabolized therapeutics require long-term survival of PCLS in culture. In the present study, we evaluated viability, physiology and structural integrity of PCLS cultured for up to 15 days. METHODS: PCLS were cultured for 15 days and various parameters were assessed at different time points. RESULTS: Structural integrity and viability of cultured PCLS remained constant for 15 days. Moreover, bronchoconstriction was inducible over the whole period of cultivation, though with decreased sensitivity (EC501d = 4 × 10-8 M vs. EC5015d = 4 × 10-6 M) and reduced maximum of initial airway area (1d = 0.5% vs. 15d = 18.7%). In contrast, even though still clearly inducible compared to medium control, LPS-induced TNF-α secretion decreased significantly from day 1 to day 15 of culture. CONCLUSIONS: Overall, though long-term cultivation of PCLS need further investigation for cytokine secretion, possibly on a cellular level, PCLS are feasible for bronchoconstriction studies and toxicity assays.

4.
PLoS One ; 8(8): e71728, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967238

RESUMEN

Annual outbreaks of influenza infections, caused by new influenza virus subtypes and high incidences of zoonosis, make seasonal influenza one of the most unpredictable and serious health threats worldwide. Currently available vaccines, though the main prevention strategy, can neither efficiently be adapted to new circulating virus subtypes nor provide high amounts to meet the global demand fast enough. New influenza vaccines quickly adapted to current virus strains are needed. In the present study we investigated the local toxicity and capacity of a new inhalable influenza vaccine to induce an antigen-specific recall response at the site of virus entry in human precision-cut lung slices (PCLS). This new vaccine combines recombinant H1N1 influenza hemagglutinin (HAC1), produced in tobacco plants, and a silica nanoparticle (NP)-based drug delivery system. We found no local cellular toxicity of the vaccine within applicable concentrations. However higher concentrations of NP (≥10(3) µg/ml) dose-dependently decreased viability of human PCLS. Furthermore NP, not the protein, provoked a dose-dependent induction of TNF-α and IL-1ß, indicating adjuvant properties of silica. In contrast, we found an antigen-specific induction of the T cell proliferation and differentiation cytokine, IL-2, compared to baseline level (152±49 pg/mg vs. 22±5 pg/mg), which could not be seen for the NP alone. Additionally, treatment with 10 µg/ml HAC1 caused a 6-times higher secretion of IFN-γ compared to baseline (602±307 pg/mg vs. 97±51 pg/mg). This antigen-induced IFN-γ secretion was further boosted by the adjuvant effect of silica NP for the formulated vaccine to a 12-fold increase (97±51 pg/mg vs. 1226±535 pg/mg). Thus we were able to show that the plant-produced vaccine induced an adequate innate immune response and re-activated an established antigen-specific T cell response within a non-toxic range in human PCLS at the site of virus entry.


Asunto(s)
Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Nanoconjugados/administración & dosificación , Administración por Inhalación , Citocinas/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/toxicidad , Gripe Humana/inmunología , Pulmón/inmunología , Pulmón/patología , Nanoconjugados/química , Dióxido de Silicio/química , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
PLoS One ; 7(8): e43709, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952743

RESUMEN

Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1ß) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1ß. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50)). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1ß levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Lipopolisacáridos/farmacología , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/tratamiento farmacológico , Pulmón/efectos de los fármacos , Anciano , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Benzamidas/farmacología , Benzamidas/uso terapéutico , Líquido del Lavado Bronquioalveolar , Callithrix , Ciclopropanos/farmacología , Ciclopropanos/uso terapéutico , Femenino , Humanos , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Masculino , Persona de Mediana Edad , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...