Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Z Med Phys ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37019739

RESUMEN

PURPOSE: To provide a robust whole-brain quantitative magnetization transfer (MT) imaging method that is not limited by long acquisition times. METHODS: Two variants of a spiral 2D interleaved multi-slice spoiled gradient echo (SPGR) sequence are used for rapid quantitative MT imaging of the brain at 3 T. A dual flip angle, steady-state prepared, double-contrast method is used for combined B1 and-T1 mapping in combination with a single-contrast MT-prepared acquisition over a range of different saturation flip angles (50 deg to 850 deg) and offset frequencies (1 kHz and 10 kHz). Five sets (containing minimum 6 to maximum 18 scans) with different MT-weightings were acquired. In addition, main magnetic field inhomogeneities (ΔB0) were measured from two Cartesian low-resolution 2D SPGR scans with different echo times. Quantitative MT model parameters were derived from all sets using a two-pool continuous-wave model analysis, yielding the pool-size ratio, F, their exchange rate, kf, and their transverse relaxation time, T2r. RESULTS: Whole-brain quantitative MT imaging was feasible for all sets with total acquisition times ranging from 7:15 min down to 3:15 min. For accurate modeling, B1-correction was essential for all investigated sets, whereas ΔB0-correction showed limited bias for the observed maximum off-resonances at 3 T. CONCLUSION: The combination of rapid B1-T1 mapping and MT-weighted imaging using a 2D multi-slice spiral SPGR research sequence offers excellent prospects for rapid whole-brain quantitative MT imaging in the clinical setting.

2.
NMR Biomed ; : e4938, 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-36967637

RESUMEN

Resection control in brain tumor surgery can be achieved in real time with intraoperative MRI (iMRI). Arterial spin labeling (ASL), a technique that measures cerebral blood flow (CBF) non-invasively without the use of intravenous contrast agents, can be performed intraoperatively, providing morpho-physiological information. This study aimed to evaluate the feasibility, image quality and potential to depict residual tumor of a pseudo-continuous ASL (PCASL) sequence at 3 T. Seventeen patients with brain tumors, primary (16) or metastatic (1), undergoing resection surgery with iMRI monitoring, were prospectively recruited (nine men, age 56 ± 16.6 years). A PCASL sequence with long labeling duration (3000 ms) and postlabeling delay (2000 ms) was added to the conventional protocol, which consisted of pre- and postcontrast 3D T1 -weighted (T1w) images, optional 3D-FLAIR, and diffusion. Three observers independently assessed the image quality (four-point scale) of PCASL-derived CBF maps. In those with diagnostic quality (Scores 2-4) they evaluated the presence of residual tumor using the conventional sequences first, and the CBF maps afterwards (three-point scale). Inter-observer agreement for image quality and the presence of residual tumor was assessed using Fleiss kappa statistics. The intraoperative CBF ratio of the surgical margins (i.e., perilesional CBF values normalized to contralateral gray matter CBF) was compared with preoperative CBF ratio within the tumor (Wilcoxon's test). Diagnostic ASL image quality was observed in 94.1% of patients (interobserver Fleiss κ = 0.76). PCASL showed additional foci suggestive of high-grade residual component in three patients, and a hyperperfused area extending outside the enhancing component in one patient. Interobserver agreement was almost perfect in the evaluation of residual tumor with the conventional sequences (Fleiss κ = 0.92) and substantial for PCASL (Fleiss κ = 0.80). No significant differences were found between pre and intraoperative CBF ratios (p = 0.578) in patients with residual tumor (n = 7). iMRI-PCASL perfusion is feasible at 3 T and is useful for the intraoperative assessment of residual tumor, providing in some cases additional information to the conventional sequences.

3.
Magn Reson Med ; 90(1): 177-193, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36960958

RESUMEN

PURPOSE: A new class of asymmetric adiabatic radiofrequency (RF) pulses, Hybrid Adiabatic Pulse with asYmmetry (HAPY), is designed to be used as the labeling pulse for Pulsed Arterial Spin labeling (PASL) at 7T to reduce overall specific absorption rate (SAR) while maintaining high labeling efficiency with B 0 $$ {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. METHODS: Realistic Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ distributions were extracted from multiple in vivo scans. The proposed class of asymmetric pulses was parameterized and optimized considering these conditions. Simulation and phantoms experiments were performed to compare the optimized pulses with HS-3, GOIA, and trFOCI pulses. In vivo experiments were conducted to demonstrate the application of HAPY in PICORE PASL at 7T, compared with the GOIA and trFOCI pulses. RESULTS: HAPYs with different amounts of pulse energy reduction are obtained by the proposed optimization framework. Both simulation and phantom experiments demonstrate that HAPY achieves high labeling efficiency and high selectivity along the critical side despite B 0 $$ {\mathrm{B}}_0 $$ off-resonance and low B 1 + $$ {\mathrm{B}}_1^{+} $$ amplitude. In vivo experiments reveal that HAPY is able to generate robust perfusion signal with less overall SAR or shorter pulse repetition time, compared to the GOIA and trFOCI pulses. CONCLUSION: The HAPY class of pulses, obtained via systematic optimization tailored to the application of PASL at 7T, reduces power deposition without affecting labeling efficiency, which provides a prospect of further exploiting the benefits of ultra-high field in ASL.


Asunto(s)
Arterias , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Marcadores de Spin , Arterias/diagnóstico por imagen , Simulación por Computador , Frecuencia Cardíaca , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen
4.
J Cereb Blood Flow Metab ; 43(4): 565-580, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36412244

RESUMEN

Several studies have shown decreased cerebral blood flow (CBF) in Alzheimer's disease (AD). However, the role of hypoperfusion in the disease pathogenesis remains unclear. Combining arterial spin labeling MRI, PET, and CSF biomarkers, we investigated the associations between gray matter (GM)-CBF and the key mechanisms in AD including amyloid-ß (Aß) and tau pathology, synaptic and axonal degeneration. Further, we applied a disease progression modeling to characterize the temporal sequence of different AD biomarkers. Lower perfusion was observed in temporo-occipito-parietal cortex in the Aß-positive cognitively impaired compared to both Aß-negative and Aß-positive cognitively unimpaired individuals. In participants along the AD spectrum, GM-CBF was associated with tau, synaptic and axonal dysfunction, but not Aß in similar cortical regions. Axonal degeneration was further associated with hypoperfusion in cognitively unimpaired individuals. Disease progression modeling revealed that GM-CBF disruption Followed the abnormality of biomarkers of Aß, tau and brain atrophy. These findings indicate that tau tangles and neurodegeneration are more closely connected with GM-CBF changes than Aß pathology. Although subjected to the sensitivity of the employed neuroimaging techniques and the modeling approach, these findings suggest that hypoperfusion might not be an early event associated with the build-up of Aß in preclinical phase of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Sustancia Gris/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Progresión de la Enfermedad
5.
Front Neurosci ; 16: 974651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992919

RESUMEN

Background: Pseudo-continuous arterial spin labeling (pCASL) is widely used to quantify cerebral blood flow (CBF) abnormalities in patients with Alzheimer's disease (AD). T1-mapping techniques assess microstructural characteristics in various pathologic changes, but their application in AD remains in the exploratory stage. We hypothesized that combining quantitative CBF and T1 values would generate diagnostic results with higher accuracy than using either method alone in discriminating AD patients from cognitively normal control (NC) subjects. Materials and methods: A total of 45 patients diagnosed with AD and 33 NC subjects were enrolled, and cognitive assessment was performed for each participant according to the Chinese version of the Mini-Mental State Examination (MMSE). T1-weighted magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) and pCASL sequence were scanned on a 3T MR scanner. A brain morphometric analysis was integrated into prototype sequence, providing tissue classification and morphometric segmentation results. Quantitative CBF and T1 values of each brain region were automatically generated inline after data acquisition. Independent samples t-test was used to compare regional CBF and T1 values controlled by false discovery rate correction (corrected p < 0.01). The model with combined CBF and T1 values was compared with the individual index by performing receiver operating characteristic curves analysis. The associations between the MMSE score and CBF and T1 values of the brain were investigated using partial correlations. Results: Cerebral blood flow of the right caudate nucleus (RCc) and left hippocampus (LHc) was significantly lower in the AD group compared with the NC group, while the T1 values of the right caudate nucleus (RCt) and left hippocampus (LHt) increased in the AD group. Prediction accuracies of 73.1, 77.2, 75.9, and 81.3% were achieved for each of the above parameters, respectively. In distinguishing patients from controls using the corresponding optimized cut-off values, most combinations of parameters were elevated (area under curve = 0.775-0.894). The highest area under curve value was 0.944, by combining RCc, LHc, RCt, and LHt. Conclusion: In this preliminary study, the combined model based on pCASL and T1-mapping improved the diagnostic performance of discriminating AD and NC groups. T1-mapping may become a competitive technique for quantitatively measuring pathologic changes in the brain.

7.
Pediatr Radiol ; 52(7): 1370-1380, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35249145

RESUMEN

Arterial spin labeling magnetic resonance imaging is highly suited to the exploration of brain perfusion in neonates and has the potential to provide relevant complementary information to neuroimaging studies, with insights into neurodevelopmental outcomes. Applying this technique within the first days of life is challenging and requires specific technical adaptations. The literature on this topic is scarce and heterogeneous, especially on 1.5-T scanners, limiting widespread clinical adoption. This paper aims to describe a simple approach for arterial spin labeling in neonates, with key considerations for radiologists.


Asunto(s)
Circulación Cerebrovascular , Neuroimagen , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Radiólogos , Marcadores de Spin
8.
Magn Reson Med ; 87(1): 236-248, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34463400

RESUMEN

PURPOSE: Lung stiffness alters with many diseases; therefore, several MR elastography (MRE) studies were performed earlier to investigate the stiffness of the right lung during breathhold at residual volume and total lung capacity. The aims of this study were 1) to estimate shear stiffness of the lungs using MRE under free breathing and demonstrate the measurements' repeatability and reproducibility, and 2) to compare lung stiffness under free breathing to breathhold and as a function of age and gender. METHODS: Twenty-five healthy volunteers were scanned on a 1.5 Tesla MRI scanner. Spin-echo dual-density spiral and a spin-echo EPI MRE sequences were used to measure shear stiffness of the lungs during free breathing and breathhold at midpoint of tidal volume, respectively. Concordance correlation coefficient and Bland-Altman analyses were performed to determine the repeatability and reproducibility of the spin-echo dual-density spiral-derived shear stiffness. Repeated measures analyses of variances were used to investigate differences in shear stiffness between spin-echo dual-density spiral and spin-echo EPI, right and left lungs, males and females, and different age groups. RESULTS: Free-breathing MRE sequence was highly repeatable and reproducible (concordance correlation coefficient > 0.86 for both lungs). Lung stiffness was significantly lower in breathhold than in free breathing (P < .001), which can be attributed to potential stress relaxation of lung parenchyma or breathhold inconsistencies. However, there was no significant difference between different age groups (P = .08). The left lung showed slightly higher stiffness values than the right lung (P = .14). There is no significant difference in lung stiffness between genders. CONCLUSION: This study demonstrated the feasibility of free-breathing lung MRE with excellent repeatability and reproducibility. Stiffness changes with age and during the respiratory cycle. However, gender does not influence lungs stiffness.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagen Eco-Planar , Femenino , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados
9.
Sci Rep ; 11(1): 23325, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857793

RESUMEN

Cerebral blood flow (CBF) measured with arterial spin labelling (ASL) magnetic resonance imaging (MRI) reflects cerebral perfusion, related to metabolism, and arterial transit time (ATT), related to vascular health. Our aim was to investigate the spatial coefficient of variation (sCoV) of CBF maps as a surrogate for ATT, in volunteers meeting criteria for subjective cognitive decline (SCD), amnestic mild cognitive impairment (MCI) and probable Alzheimer's dementia (AD). Whole-brain pseudo continuous ASL MRI was performed at 3 T in 122 participants (controls = 20, SCD = 44, MCI = 45 and AD = 13) across three sites in New Zealand. From CBF maps that included all grey matter, sCoV progressively increased across each group with increased cognitive deficit. A similar overall trend was found when examining sCoV solely in the temporal lobe. We conclude that sCoV, a simple to compute imaging metric derived from ASL MRI, is sensitive to varying degrees of cognitive changes and supports the view that vascular health contributes to cognitive decline associated with Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Circulación Cerebrovascular , Disfunción Cognitiva/patología , Demencia/fisiopatología , Angiografía por Resonancia Magnética/métodos , Neuroimagen/métodos , Anciano , Estudios de Casos y Controles , Disfunción Cognitiva/epidemiología , Femenino , Humanos , Masculino , Nueva Zelanda/epidemiología , Análisis Espacial
10.
Front Oncol ; 11: 746059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692529

RESUMEN

PURPOSE: To investigate the clinical feasibility of accelerated free-breathing stack-of-spirals (spiral) three-dimensional (3D) ultrashort echo time (UTE) lung magnetic resonance imaging (MRI) using iterative self-consistent parallel imaging reconstruction from arbitrary k-space (SPIRiT) algorithm in patients with breast cancer. METHODS: The institutional review board approved this prospective study and patients' informed consents were obtained. Between June and August 2018, 29 female patients with breast cancer underwent 3-T MRI including accelerated free-breathing spiral 3D UTE (0.98-mm isotropic spatial resolution; echo time, 0.05 msec) of the lungs and thin-section chest computed tomography (CT). Two radiologists evaluated the image quality and pulmonary nodules on MRI were assessed and compared, CT as a reference. RESULTS: The pulmonary vessels and bronchi were visible consistently up to the sub-sub-segmental and sub-segmental branch levels, respectively, on accelerated spiral 3D UTE. The overall image quality was evaluated as good and excellent for 70.7% of accelerated spiral 3D UTE images (reviewer [R]1, 72.4% [21/29]; R2, 69.0% [20/29]) and acceptable for 20.7% (both R1 and R2, 20.7% [6/29]). Five patients on CT revealed 141 pulmonary metastatic nodules (5.3 ± 2.6 mm); the overall nodule detection rate of accelerated spiral 3D UTE was sensitivity of 90.8% (128/141), accuracy of 87.7%, and positive predictive value of 96.2%. In the Bland-Altman plot analysis comparing nodule size between CT and MRI, 132/141 nodules (93.6%) were inside the limits of agreement. CONCLUSION: Accelerated free-breathing spiral 3D UTE using the SPIRiT algorithm could be a potential alternative to CT for oncology patients.

11.
Neuroradiology ; 63(8): 1345-1352, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34185105

RESUMEN

PURPOSE: To evaluate the correlation between histogram parameters derived from pseudo-continuous arterial spin labeling (PCASL) and human papillomavirus (HPV) status in patients with oropharyngeal squamous cell carcinoma (OPSCC). METHODS: This study included a total of 58 patients (HPV-positive: n = 45; -negative: n = 13) from a prospective cohort of consecutive patients aged ≥ 18 years, who were newly diagnosed with oropharyngeal squamous cell carcinoma. All patients were required to have undergone pre-treatment MRI with PCASL to measure regional perfusion. The region of interest was drawn by two radiologists, encompassing the entire tumor volume on all corresponding slices. Differences in the histogram parameters derived from tumor blood flow (TBF) in ASL were assessed for HPV-positive and -negative patients. Receiver operating characteristic curve analysis was performed to determine the best differentiating parameters, and a leave-one-out cross-validation was used. RESULTS: Patients with HPV-positive OPSCC showed a significantly lower overall standard deviation and 95th percentile value of tumor blood flow (P < .007). The standard deviation of TBF was the single best predictive parameter. Leave-one-out cross-validation tests revealed that the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity were 0.745, 75.9%, 75.6%, and 76.9%, respectively. CONCLUSION: PCASL revealed differences in perfusion parameters according to HPV status in patients with OPSCC, reflecting their distinct histopathology.


Asunto(s)
Alphapapillomavirus , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Anciano , Carcinoma de Células Escamosas/diagnóstico por imagen , Humanos , Papillomaviridae , Perfusión , Estudios Prospectivos , Marcadores de Spin , Carcinoma de Células Escamosas de Cabeza y Cuello
12.
Front Bioeng Biotechnol ; 9: 666456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026743

RESUMEN

Modulation of cerebral blood flow and vascular compliance plays an important role in the regulation of intracranial pressure (ICP) and also influences the viscoelastic properties of brain tissue. Therefore, magnetic resonance elastography (MRE), the gold standard for measuring in vivo viscoelasticity of brain tissue, is potentially sensitive to cerebral autoregulation. In this study, we developed a multifrequency MMRE technique that provides serial maps of viscoelasticity at a frame rate of nearly 6 Hz without gating, i.e., in quasi-real time (rt-MMRE). This novel method was used to monitor rapid changes in the viscoelastic properties of the brains of 17 volunteers performing the Valsalva maneuver (VM). rt-MMRE continuously sampled externally induced vibrations comprising three frequencies of 30.03, 30.91, and 31.8 Hz were over 90 s using a steady-state, spiral-readout gradient-echo sequence. Data were processed by multifrequency dual elasto-visco (MDEV) inversion to generate maps of magnitude shear modulus | G∗| (stiffness) and loss angle φ at a frame rate of 5.4 Hz. As controls, the volunteers were examined to study the effects of breath-hold following deep inspiration and breath-hold following expiration. We observed that | G∗| increased while φ decreased due to VM and, less markedly, due to breath-hold in inspiration. Group mean VM values showed an early overshoot of | G∗| 2.4 ± 1.2 s after the onset of the maneuver with peak values of 6.7 ± 4.1% above baseline, followed by a continuous increase in stiffness during VM. A second overshoot of | G∗| occurred 5.5 ± 2.0 s after the end of VM with peak values of 7.4 ± 2.8% above baseline, followed by 25-s sustained recovery until the end of image acquisition. φ was constantly reduced by approximately 2% during the entire VM without noticeable peak values. This is the first report of viscoelasticity changes in brain tissue induced by physiological maneuvers known to alter ICP and detected by clinically applicable rt-MMRE. Our results show that apnea and VM slightly alter brain properties toward a more rigid-solid behavior. Overshooting stiffening reactions seconds after onset and end of VM reveal rapid autoregulatory processes of brain tissue viscoelasticity.

13.
Med Image Anal ; 71: 102067, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33930830

RESUMEN

Multi-Delay single-shot arterial spin labeling (ASL) imaging provides accurate cerebral blood flow (CBF) and, in addition, arterial transit time (ATT) maps but the inherent low SNR can be challenging. Especially standard fitting using non-linear least squares often fails in regions with poor SNR, resulting in noisy estimates of the quantitative maps. State-of-the-art fitting techniques improve the SNR by incorporating prior knowledge in the estimation process which typically leads to spatial blurring. To this end, we propose a new estimation method with a joint spatial total generalized variation regularization on CBF and ATT. This joint regularization approach utilizes shared spatial features across maps to enhance sharpness and simultaneously improves noise suppression in the final estimates. The proposed method is evaluated at three levels, first on synthetic phantom data including pathologies, followed by in vivo acquisitions of healthy volunteers, and finally on patient data following an ischemic stroke. The quantitative estimates are compared to two reference methods, non-linear least squares fitting and a state-of-the-art ASL quantification algorithm based on Bayesian inference. The proposed joint regularization approach outperforms the reference implementations, substantially increasing the SNR in CBF and ATT while maintaining sharpness and quantitative accuracy in the estimates.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Humanos , Reproducibilidad de los Resultados , Marcadores de Spin
14.
Brain Connect ; 11(6): 483-492, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33478362

RESUMEN

Background: Patients with age-related sensorineural hearing loss (HL) may benefit from auditory input amplification by using hearing aids (HAs). However, the impact of both HL- and HA-based rehabilitation on central auditory functional connectivity (FC) is not clear. Methodology: Sixty-two HL (22 females, aged 64.4 ± 7.6 years, pure-tone average 50.9 ± 14.7 dB right ear, 50.7 ± 12.9 dB left ear) and 32 normal hearing (NH) subjects (22 females, aged 59.3 ± 7.3 years) were examined in a 3T magnetic resonance imaging (MRI) study. HL patients were analyzed cross-sectionally at baseline (vs. NH subjects) and longitudinally at 6-month follow-up. Between the 2 scans, 31/62 patients used the HA 9.5 ± 3.8 h a day. Arterial spin labeling and blood oxygen level-dependent resting-state functional MRI were performed to measure regional perfusion in the primary auditory cortex and, from here to the whole brain, seed-based FC was performed. Before each scan, HL patients underwent audiological and neurological assessments. Results: At baseline, the HL condition was associated with regional hypoperfusion in right Heschl's gyrus (seed) and negative seed-based FC (anticorrelation) in posterior brain regions. Long-range FC in the precuneus correlated negatively with pure-tone and speech reception average thresholds. At 6-month follow-up, HA usage was associated with seed-based FC increase in the right superior frontal gyrus (SFG) and seed-based FC reduction in the right middle temporal gyrus. Long-range FC changes in the SFG correlated positively with executive function improvements. Conclusions: These findings suggest that HA-based rehabilitation may not reverse HL-related neural effects and yet carry neurological benefits by retuning long-range FC of the auditory system. Impact statement Age-related sensorineural hearing loss (HL) affects 40% to 60% of the worldwide population and a common, viable rehabilitation strategy is to provide auditory input amplification through hearing aids (HAs). By targeting metabolically depressed, auditory cortical centers, our work reveals a possible neural link between peripheral and central vulnerability in HL patients in the form of aberrant, long-range, functional connectivity effects. Similarly, we unveil how wearing HAs for 6 months may induce neuroplastic changes that positively correlate with improved neuropsychological performances.


Asunto(s)
Corteza Auditiva , Pérdida Auditiva , Encéfalo/diagnóstico por imagen , Femenino , Sustancia Gris , Pérdida Auditiva/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
15.
Magn Reson Med Sci ; 20(1): 91-98, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32295977

RESUMEN

PURPOSE: To evaluate the feasibility for the detection of slight contrast effects after intravenous administration of single dose gadolinium-based contrast agent (IV-SD-GBCA), the time course of the GBCA distribution up to 24 h was examined in various fluid spaces and brain parenchyma using 3D-real IR imaging and MR fingerprinting (MRF). METHODS: Twenty-four patients with a suspicion of endolymphatic hydrops were scanned at pre-administration and at 10 min, 4 and 24 h post-IV-SD-GBCA. 3D-real IR images and MRF at the level of the internal auditory canal were obtained. The signal intensity on the 3D-real IR image of the cerebrospinal fluid (CSF) in the cerebellopontine angle cistern (CPA), Sylvian fissure (Syl), lateral ventricle (LV), and cochlear perilymph (CPL) was measured. The T1 and T2 values of cerebellar gray (GM) and white matter (WM) were measured using MRF. Each averaged value at the various time points was compared using an analysis of variance. RESULTS: The signal intensity on the 3D-real IR image in each CSF region peaked at 4 h, and was decreased significantly by 24 h (P< 0.05). All patients had a maximum signal intensity at 4 h in the CPA, and Syl. The mean CPL signal intensity peaked at 4 h and decreased significantly by 24 h (P < 0.05). All patients but two had a maximum signal intensity at 4 h. Regarding the T1 value in the cerebellar WM and GM, the T1 value at 10 min post-IV-GBCA was significantly decreased compared to the pre-contrast scan, but no significant difference was observed at the other time points. There was no significant change in T2 in the gray or white matter at any of the time points. CONCLUSION: Time course of GBCA after IV-SD-GBCA could be evaluated by 3D-real IR imaging in CSF spaces and in the brain by MRF.


Asunto(s)
Medios de Contraste , Gadolinio , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Administración Intravenosa , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Medios de Contraste/administración & dosificación , Medios de Contraste/farmacocinética , Hidropesía Endolinfática/líquido cefalorraquídeo , Hidropesía Endolinfática/diagnóstico por imagen , Hidropesía Endolinfática/fisiopatología , Gadolinio/administración & dosificación , Gadolinio/farmacocinética , Humanos
16.
MAGMA ; 34(3): 437-450, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33048262

RESUMEN

OBJECTIVE: In this perfusion magnetic resonance imaging study, the performances of different pseudo-continuous arterial spin labeling (PCASL) sequences were compared: two-dimensional (2D) single-shot readout with simultaneous multislice (SMS), 2D single-shot echo-planar imaging (EPI) and multishot three-dimensional (3D) gradient and spin echo (GRASE) sequences combined with a background-suppression (BS) module. MATERIALS AND METHODS: Whole-brain PCASL images were acquired from seven healthy volunteers. The performance of each protocol was evaluated by extracting regional cerebral blood flow (rCBF) measures using an inline morphometric segmentation prototype. Image data postprocessing and subsequent statistical analyses enabled comparisons at the regional and sub-regional levels. RESULTS: The main findings were as follows: (i) Mean global CBF obtained across methods was were highly correlated, and these correlations were significantly higher among the same readout sequences. (ii) Temporal signal-to-noise ratio and gray-matter-to-white-matter CBF ratio were found to be equivalent for all 2D variants but lower than those of 3D-GRASE. DISCUSSION: Our study demonstrates that the accelerated SMS readout can provide increased acquisition efficiency and/or a higher temporal resolution than conventional 2D and 3D readout sequences. Among all of the methods, 3D-GRASE showed the lowest variability in CBF measurements and thus highest robustness against noise.


Asunto(s)
Imagenología Tridimensional , Encéfalo , Circulación Cerebrovascular , Imagen Eco-Planar , Humanos , Angiografía por Resonancia Magnética , Marcadores de Spin
17.
Magn Reson Med ; 85(1): 209-222, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32720406

RESUMEN

PURPOSE: Although several MRI methods have been explored to achieve in vivo myelin quantification, imaging the whole brain in clinically acceptable times and sufficiently high resolution remains challenging. To address this problem, this work investigates the acceleration of multi-echo T2 acquisitions based on the multi-echo gradient and spin echo (GRASE) sequence using CAIPIRINHA undersampling and adapted k-space reordering patterns. METHODS: A prototype multi-echo GRASE sequence supporting CAIPIRINHA parallel imaging was implemented. Multi-echo T2 data were acquired from 12 volunteers using the implemented sequence (1.6 × 1.6 × 1.6 mm3 , 84 slices, acquisition time [TA] = 10:30 min) and a multi-echo spin echo (MESE) sequence as reference (1.6 × 1.6 × 3.2 mm3 , single-slice, TA = 5:41 min). Myelin water fraction (MWF) maps derived from both acquisitions were compared via correlation and Bland-Altman analyses. In addition, scan-rescan datasets were acquired to evaluate the repeatability of the derived maps. RESULTS: Resulting maps from the MESE and multi-echo GRASE sequences were found to be correlated (r = 0.83). The Bland-Altman analysis revealed a mean bias of -0.2% (P = .24) with the limits of agreement ranging from -3.7% to 3.3%. The Pearson's correlation coefficient among MWF values obtained from the scan-rescan datasets was found to be 0.95 and the mean bias equal to 0.11% (P = .32), indicating good repeatability of the retrieved maps. CONCLUSION: By combining a 3D multi-echo GRASE sequence with CAIPIRINHA sampling, whole-brain MWF maps were obtained in 10:30 min with 1.6 mm isotropic resolution. The good correlation with conventional MESE-based maps demonstrates that the implemented sequence may be a promising alternative to time-consuming MESE acquisitions.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Vaina de Mielina , Agua , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética
18.
Magn Reson Med ; 85(5): 2686-2695, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33349950

RESUMEN

PURPOSE: Magnetization transfer ratio (MTR) histograms are used widely for the assessment of diffuse pathological changes in the brain. For broad clinical application, MTR scans should not only be fast, but confounding factors should also be minimized for high reproducibility. To this end, a 1-minute whole-brain spiral MTR method with intrinsic B1 -field correction is introduced. METHODS: A spiral multislice spoiled gradient-echo sequence with adaptable magnetization-transfer saturation pulses (angle ß) is proposed. After a low-resolution single-shot spiral readout and a dummy preparation period, high-resolution images are acquired using an interleaved spiral readout. For whole-brain MTR imaging, 50 interleaved slices with three different magnetization-transfer contrasts (ß = 0°, 350°, and 550°) together with an intrinsic B1 -field map are recorded in 58.5 seconds on a clinical 3T system. From the three contrasts, two sets of MTR images are derived and used for subsequent B1 correction, assuming a linear dependency on ß. For validation, a binary spin bath model is used. RESULTS: For the proposed B1 -correction scheme, numerical simulations indicate for brain tissue a decrease of about a factor of 10 for the B1 -related bias on MTR. As a result, following B1 correction, MTR differences in gray and white matter become markedly accentuated, and the reproducibility of MTR histograms from scan-rescan experiments is improved. Furthermore, B1 -corrected MTR histograms show a lower variability for age-matched normal-appearing brain tissue. CONCLUSION: From its speed and offering intrinsic B1 correction, the proposed method shows excellent prospects for clinical studies that explore magnetization-transfer effects based on MTR histogram analysis.


Asunto(s)
Encéfalo , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
19.
J Magn Reson Imaging ; 52(5): 1413-1426, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542779

RESUMEN

BACKGROUND: Arterial spin labeling (ASL) is a useful tool for measuring cerebral blood flow (CBF). However, due to the low signal-to-noise ratio (SNR) of the technique, multiple repetitions are required, which results in prolonged scan times and increased susceptibility to artifacts. PURPOSE: To develop a deep-learning-based algorithm for simultaneous denoising and suppression of transient artifacts in ASL images. STUDY TYPE: Retrospective. SUBJECTS: 131 pediatric neuro-oncology patients for model training and 11 healthy adult subjects for model evaluation. FIELD STRENGTH/SEQUENCE: 3T / pseudo-continuous and pulsed ASL with 3D gradient-and-spin-echo readout. ASSESSMENT: A denoising autoencoder (DAE) model was designed with stacked encoding/decoding convolutional layers. Reference standard images were generated by averaging 10 pairwise ASL subtraction images. The model was trained to produce perfusion images of a similar quality using a single subtraction image. Performance was compared against Gaussian and non-local means (NLM) filters. Evaluation metrics included SNR, peak SNR (PSNR), and structural similarity index (SSIM) of the CBF images, compared to the reference standard. STATISTICAL TESTS: One-way analysis of variance (ANOVA) tests for group comparisons. RESULTS: The DAE model was the only model to produce a significant increase in SNR compared to the raw images (P < 0.05), providing an average SNR gain of 62%. The DAE model was also effective at suppressing transient artifacts, and was the only model to show a significant improvement in accuracy in the generated CBF images, as assessed using PSNR values (P < 0.05). In addition, using data from multiple inflow time acquisitions, the DAE images produced the best fit to the Buxton kinetic model, offering a 75% reduction in the fitting error compared to the raw images. DATA CONCLUSION: Deep-learning-based algorithms provide superior accuracy when denoising ASL images, due to their ability to simultaneously increase SNR and suppress artifactual signals in raw ASL images. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Artefactos , Aprendizaje Profundo , Adulto , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Niño , Humanos , Imagen por Resonancia Magnética , Estudios Retrospectivos , Marcadores de Spin
20.
Radiology ; 296(1): 191-199, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32343212

RESUMEN

Background In cystic fibrosis (CF), recurrent imaging and pulmonary function tests (PFTs) are needed for the assessment of lung function during disease management. Purpose To assess the clinical feasibility of pulmonary three-dimensional ultrashort echo time (UTE) MRI at breath holding for quantitative image analysis of ventilation inhomogeneity and hyperinflation in CF compared with PFT. Materials and Methods In this prospective study from May 2018 to June 2019, participants with CF and healthy control participants underwent PFTs and functional lung MRI by using a prototypical single breath-hold three-dimensional UTE sequence. Fractional ventilation (FV) was calculated from acquired data in normal inspiration and normal expiration. FV of each voxel was normalized to the whole lung mean (FVN), and interquartile range of normalized ventilation (IQRN; as a measure of ventilation heterogeneity) was calculated. UTE signal intensity (SI) was assessed in full expiration (SIN, normalized to aortic blood). Obtained metrics were compared between participants with CF and control participants. For participants with CF, MRI metrics were correlated with the standard lung clearance index (LCI) and PFT. Mann-Whitney U tests and Spearman correlation were used for statistical analysis. Results Twenty participants with CF (mean age, 17 years ± 9 [standard deviation]; 12 men) and 10 healthy control participants (24 years ± 8; five men) were included. IQRN was higher for participants with CF than for control participants (mean, 0.66 ± 0.16 vs 0.50 ± 0.04, respectively; P = .007). In the 20 participants with CF, IQRN correlated with obstruction markers forced expiratory volume in 1 second-to-forced vital capacity ratio (r = -0.70; 95% confidence interval [CI]: -0.92, -0.28; P < .001), mean expiratory flow 25% (r = 0.78; 95% CI: -0.95, -0.39; P < .001), and with the ventilation inhomogeneity parameter LCI (r = 0.90; 95% CI: 0.69, 0.96; P < .001). Mean SIN in full expiration was lower in participants with CF than in control participants (0.34 ± 0.08 vs 0.39 ± 0.03, respectively; P = .03). Conclusion Three-dimensional ultrashort echo time MRI in the lungs allowed for functional imaging of ventilation inhomogeneity within a few breath holds in patients with cystic fibrosis. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.


Asunto(s)
Fibrosis Quística/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Estudios de Factibilidad , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...