Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 172: 109651, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33740668

RESUMEN

Nondestructive microbeam X-ray fluorescence (µXRF) spectrometry has been used to investigate the elemental microheterogeneity in a nuclear forensics reference material (RM), NIST SRM 4600 Surrogate Post-detonation Urban Debris. Using a principal component analysis (PCA) model, results indicate the majority of elements appear homogeneous; however, zinc (Zn) exhibits microscale heterogeneity for this SRM. To minimize contributions to the measurement uncertainty from elemental microheterogeneity, a minimum sample mass of 24 mg is recommended for analysis.

2.
Anal Bioanal Chem ; 406(29): 7511-21, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25178932

RESUMEN

Ambient desorption/ionization (ADI) sources coupled to mass spectrometry (MS) offer outstanding analytical features: direct analysis of real samples without sample pretreatment, combined with the selectivity and sensitivity of MS. Since ADI sources typically work in the open atmosphere, ambient conditions can affect the desorption and ionization processes. Here, the effects of internal source parameters and ambient humidity on the ionization processes of the flowing atmospheric pressure afterglow (FAPA) source are investigated. The interaction of reagent ions with a range of analytes is studied in terms of sensitivity and based upon the processes that occur in the ionization reactions. The results show that internal parameters which lead to higher gas temperatures afforded higher sensitivities, although fragmentation is also affected. In the case of humidity, only extremely dry conditions led to higher sensitivities, while fragmentation remained unaffected.

3.
Analyst ; 139(18): 4505-11, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25054911

RESUMEN

In the last several years, illicit electronic components have been discovered in the inventories of several distributors and even installed in commercial and military products. Illicit or counterfeit electronic components include a broad category of devices that can range from the correct unit with a more recent date code to lower-specification or non-working systems with altered names, manufacturers and date codes. Current methodologies for identification of counterfeit electronics rely on visual microscopy by expert users and, while effective, are very time-consuming. Here, a plasma-based ambient desorption/ionization source, the flowing atmospheric pressure afterglow (FAPA) is used to generate a mass-spectral fingerprint from the surface of a variety of discrete electronic integrated circuits (ICs). Chemometric methods, specifically principal component analysis (PCA) and the bootstrapped error-adjusted single-sample technique (BEAST), are used successfully to differentiate between genuine and counterfeit ICs. In addition, chemical and physical surface-removal techniques are explored and suggest which surface-altering techniques were utilized by counterfeiters.

4.
J Am Soc Mass Spectrom ; 25(5): 800-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24658804

RESUMEN

Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.


Asunto(s)
Aire/análisis , Cafeína/análisis , Monitoreo del Ambiente/métodos , Modelos Químicos , Salicilatos/análisis , Presión Atmosférica , Cafeína/química , Monitoreo del Ambiente/instrumentación , Helio/química , Espectrometría de Masas/instrumentación , Reproducibilidad de los Resultados , Salicilatos/química , Propiedades de Superficie , Volatilización
5.
Anal Chem ; 85(15): 7512-8, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23808829

RESUMEN

The flowing atmospheric-pressure afterglow (FAPA) is a promising new source for atmospheric-pressure, ambient desorption/ionization mass spectrometry. However, problems exist with reproducible sample introduction into the FAPA source. To overcome this limitation, a new FAPA geometry has been developed in which concentric tubular electrodes are utilized to form a halo-shaped discharge; this geometry has been termed the halo-FAPA or h-FAPA. With this new geometry, it is still possible to achieve direct desorption and ionization from a surface; however, sample introduction through the inner capillary is also possible and improves interaction between the sample material (solution, vapor, or aerosol) and the plasma to promote desorption and ionization. The h-FAPA operates with a helium gas flow of 0.60 L/min outer, 0.30 L/min inner, and applied current of 30 mA at 200 V for 6 W of power. In addition, separation of the discharge proper and sample material prevents perturbations to the plasma. Optical-emission characterization and gas rotational temperatures reveal that the temperature of the discharge is not significantly affected (<3% change at 450 K) by water vapor during solution-aerosol sample introduction. The primary mass-spectral background species are protonated water clusters, and the primary analyte ions are protonated molecular ions (M + H(+)). Flexibility of the new ambient sampling source is demonstrated by coupling it with a laser ablation unit, a concentric nebulizer, and a droplet-on-demand system for sample introduction. A novel arrangement is also presented in which the central channel of the h-FAPA is used as the inlet to a mass spectrometer.


Asunto(s)
Presión Atmosférica , Espectrometría de Masas/instrumentación , Conductividad Eléctrica , Diseño de Equipo , Preparaciones Farmacéuticas/química
6.
Talanta ; 102: 26-33, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23182571

RESUMEN

The solution-cathode glow discharge (SCGD) is an optical emission source for atomic spectrometry comprised of a moderate-power atmospheric-pressure DC glow discharge sustained directly upon the surface of an electrically conductive solution. The SCGD boasts a simple, inexpensive design and has demonstrated detection limits similar to those of more conventional excitation sources used in atomic spectrometry. Although the analytical performance of the SCGD as an optical emission source is well characterized, the mechanism through which the discharge atomizes and excites analyte from the sample solution remains a point of debate. The current paper presents visual observations of the SCGD from a variety of imaging techniques. The implications of the images regarding the mechanism of analyte solution-to-plasma transport and excitation in the SCGD are discussed.

7.
Anal Chem ; 84(21): 9246-52, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23025277

RESUMEN

One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed "drop-on-demand" (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (∼17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 µg/mL, without sample pretreatment, were obtained.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/métodos , Presión Atmosférica , Microtecnología/métodos , Aerosoles , Calibración , Límite de Detección , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA