Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(43): 29718-29726, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37882732

RESUMEN

The surface molecular doping of organic semiconductors can play an important role in the development of organic electronic or optoelectronic devices. Single-crystal rubrene remains a leading molecular candidate for applications in electronics due to its high hole mobility. In parallel, intensive research into the fabrication of flexible organic electronics requires the careful design of functional interfaces to enable optimal device characteristics. To this end, the present work seeks to understand the effect of surface molecular doping on the electronic band structure of rubrene single crystals. Our angle-resolved photoemission measurements reveal that the Fermi level moves in the band gap of rubrene depending on the direction of surface electron-transfer reactions with the molecular dopants, yet the valence band dispersion remains essentially unperturbed. This indicates that surface electron-transfer doping of a molecular single crystal can effectively modify the near-surface charge density, while retaining good charge-carrier mobility.

2.
Nature ; 616(7956): 275-279, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37045918

RESUMEN

Singlet fission1-13 may boost photovoltaic efficiency14-16 by transforming a singlet exciton into two triplet excitons and thereby doubling the number of excited charge carriers. The primary step of singlet fission is the ultrafast creation of the correlated triplet pair17. Whereas several mechanisms have been proposed to explain this step, none has emerged as a consensus. The challenge lies in tracking the transient excitonic states. Here we use time- and angle-resolved photoemission spectroscopy to observe the primary step of singlet fission in crystalline pentacene. Our results indicate a charge-transfer mediated mechanism with a hybridization of Frenkel and charge-transfer states in the lowest bright singlet exciton. We gained intimate knowledge about the localization and the orbital character of the exciton wave functions recorded in momentum maps. This allowed us to directly compare the localization of singlet and bitriplet excitons and decompose energetically overlapping states on the basis of their orbital character. Orbital- and localization-resolved many-body dynamics promise deep insights into the mechanics governing molecular systems18-20 and topological materials21-23.

3.
Nanoscale ; 15(11): 5249-5256, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36794456

RESUMEN

Stacked organic optoelectronic devices make use of electrode materials with different work functions, leading to efficient large area light emission. In contrast, lateral electrode arrangements offer the possibility to be shaped as resonant optical antennas, radiating light from subwavelength volumes. However, tailoring electronic interface properties of laterally arranged electrodes with nanoscale gaps - to e.g. optimize charge-carrier injection - is rather challenging, yet crucial for further development of highly efficient nanolight sources. Here, we demonstrate site-selective functionalization of laterally arranged micro- and nanoelectrodes by means of different self-assembled monolayers. Upon applying an electric potential across nanoscale gaps, surface-bound molecules are removed selectively from specific electrodes by oxidative desorption. Kelvin-probe force microscopy as well as photoluminescence measurements are employed to verify the success of our approach. Moreover, we obtain asymmetric current-voltage characteristics for metal-organic devices in which just one of the electrodes is coated with 1-octadecanethiol; further demonstrating the potential to tune interface properties of nanoscale objects. Our technique paves the way for laterally arranged optoelectronic devices based on selectively engineered nanoscale interfaces and in principle enables molecular assembly with defined orientation in metallic nano-gaps.

4.
J Am Chem Soc ; 145(8): 4438-4449, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795037

RESUMEN

Molecular emitters that combine circularly polarized luminescence (CPL) and high radiative rate constants of the triplet exciton decay are highly attractive for electroluminescent devices (OLEDs) or next-generation photonic applications, such as spintronics, quantum computing, cryptography, or sensors. However, the design of such emitters is a major challenge because the criteria for enhancing these two properties are mutually exclusive. In this contribution, we show that enantiomerically pure {Cu(CbzR)[(S/R)-BINAP]} [R = H (1), 3,6-tBu (2)] are efficient thermally activated delayed fluorescence (TADF) emitters with high radiative rate constants of kTADF up to 3.1 × 105 s-1 from 1/3LLCT states according to our temperature-dependent time-resolved luminescence studies. The efficiency of the TADF process and emission wavelengths are highly sensitive to environmental hydrogen bonding of the ligands, which can be disrupted by grinding of the crystalline materials. The origin of this pronounced mechano-stimulus photophysical behavior is a thermal equilibrium between the 1/3LLCT states and a 3LC state of the BINAP ligand, which depends on the relative energetic order of the excited states and is prone to inter-ligand C-H···π interactions. The copper(I) complexes are also efficient CPL emitters displaying exceptional dissymmetry values glum of up to ±0.6 × 10-2 in THF solution and ±2.1 × 10-2 in the solid state. Importantly for application in electroluminescence devices, the C-H···π interactions can also be disrupted by employing sterically bulky matrices. Accordingly, we have investigated various matrix materials for successful implementation of the chiral copper(I) TADF emitters in proof-of-concept CP-OLEDs.

5.
Mater Horiz ; 10(1): 221-234, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36367085

RESUMEN

Multi-molecular excited states accompanied by intra- and inter-molecular geometric relaxation are commonly encountered in optical and electrooptical studies and applications of organic semiconductors as, for example, excimers or charge transfer states. Understanding the dynamics of these states is crucial to improve organic devices such as light emitting diodes and solar cells. Their full microscopic description, however, demands sophisticated tools such as ab initio quantum chemical calculations which come at the expense of high computational costs and are prone to errors by assumptions as well as iterative algorithmic procedures. Hence, the analysis of spectroscopic data is often conducted at a phenomenological level only. Here, we present a toolkit to analyze temperature dependent luminescence data and gain first insights into the relevant microscopic parameters of the molecular system at hand. By means of a Franck-Condon based approach considering a single effective inter-molecular vibrational mode and different potentials for the ground and excited state we are able to explain the luminescence spectra of such multi-molecular states. We demonstrate that by applying certain reasonable simplifications the luminescence of charge transfer states as well as excimers can be satisfactorily reproduced for temperatures ranging from cryogenics to above room temperature. We present a semi-classical and a quantum-mechanical description of our model and, for both cases, demonstrate its applicability by analyzing the temperature dependent luminescence of the amorphous donor-acceptor heterojunction tetraphenyldibenzoperiflanthene:C60 as well as polycrystalline zinc-phthalocyanine to reproduce the luminescence spectra and extract relevant system parameters such as the excimer binding energy.

6.
Inorg Chem ; 61(37): 14833-14844, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36069727

RESUMEN

Molecular near-IR (NIR) triplet-state emitters are of importance for the development of new, organic-electronics-based telecommunication technologies as optical fibers operating in the corresponding spectral bands allow for data transfer over much longer distances due to the significantly lower attenuation. However, achieving such low-energy triplet excited states with good radiative rate constants is very challenging, and studies regarding the single-photon emission of organometallics in this energy range are scarce. We have prepared a series of trigonal CuI CAAC complexes bearing chelating ligands with O, N, S, and Se donor atoms and studied their photophysical properties in this context. The compounds show weak low-energy absorption in solution between 400 and 500 nm due to mixed Cu → CAAC 1MLCT/LLCT states, resulting in yellow-green to orange appearance, which we have also correlated to the 15N NMR resonances of the π-accepting carbene ligand. In the solid state, phosphorescence from dominant 3(Cu → CAAC) CT states is observed at room temperature. The emission of the complexes is bathochromically shifted in comparison to structurally related linearly coordinated copper(I) CAAC complexes due to structural reorganization in the excited state to a T-shape. For [Cu(dbm)(CAACMe)], the broad phosphorescence with outstanding λmax = 760 nm tailors out to ca. 1100 nm and leads to its proof-of-concept application as a nonclassical single-photon light source, constituting key functional units for the implementation of tap-proof data transfer.

7.
Chem Sci ; 13(18): 5205-5219, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35655553

RESUMEN

Reversible conversion between excited-states plays an important role in many photophysical phenomena. Using 1-(pyren-2'-yl)-o-carborane as a model, we studied the photoinduced reversible charge-transfer (CT) process and the thermodynamic equilibrium between the locally-excited (LE) state and CT state, by combining steady state, time-resolved, and temperature-dependent fluorescence spectroscopy, fs- and ns-transient absorption, and DFT and LR-TDDFT calculations. Our results show that the energy gaps and energy barriers between the LE, CT, and a non-emissive 'mixed' state of 1-(pyren-2'-yl)-o-carborane are very small, and all three excited states are accessible at room temperature. The internal-conversion and reverse internal-conversion between LE and CT states are significantly faster than the radiative decay, and the two states have the same lifetimes and are in thermodynamic equilibrium.

8.
Nano Lett ; 22(3): 1032-1038, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35001635

RESUMEN

Future photonic devices require efficient, multifunctional, electrically driven light sources with directional emission properties and subwavelength dimensions. Electrically driven plasmonic nanoantennas have been demonstrated as enabling technology. Here, we present the concept of a nanoscale organic light-emitting antenna (OLEA) as a color- and directionality-switchable point source. The device consists of laterally arranged electrically contacted gold nanoantennas with their gap filled by the organic semiconductor zinc phthalocyanine (ZnPc). Since ZnPc shows preferred hole conduction in combination with gold, the recombination zone relocates depending on the polarity of the applied voltage and couples selectively to either of the two antennas. Thereby, the emission characteristics of the device also depend on polarity. Contrary to large-area OLEDs where recombination at metal contacts significantly contributes to losses, our ultracompact OLEA structures facilitate efficient radiation into the far-field rendering transparent electrodes obsolete. We envision OLEA structures to serve as wavelength-scale pixels with tunable color and directionality for advanced display applications.

9.
Sci Adv ; 7(26)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34172443

RESUMEN

Singlet exciton fission (SEF) is a key process for developing efficient optoelectronic devices. An aspect rarely probed directly, yet with tremendous impact on SEF properties, is the nuclear structure and dynamics involved in this process. Here, we directly observe the nuclear dynamics accompanying the SEF process in single crystal pentacene using femtosecond electron diffraction. The data reveal coherent atomic motions at 1 THz, incoherent motions, and an anisotropic lattice distortion representing the polaronic character of the triplet excitons. Combining molecular dynamics simulations, time-dependent density-functional theory, and experimental structure factor analysis, the coherent motions are identified as collective sliding motions of the pentacene molecules along their long axis. Such motions modify the excitonic coupling between adjacent molecules. Our findings reveal that long-range motions play a decisive part in the electronic decoupling of the electronically correlated triplet pairs and shed light on why SEF occurs on ultrafast time scales.

10.
ACS Appl Mater Interfaces ; 12(47): 53547-53556, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33167608

RESUMEN

Archetypal donor-acceptor (D-A) interfaces composed of perfluoropentacene (PFP) and pentacene (PEN) are examined for charge transfer (CT) state formation and energetics as a function of their respective molecular configuration. To exclude morphological interference, our structural as well as highly sensitive differential reflectance spectroscopy studies were carried out on PFP thin films epitaxially grown on PEN(001) single-crystal facets. Whereas the experimental data supported by complementary theoretical calculations confirm the formation of a strong CT state in the case of a cofacial PFP-PEN stacking, CT formation is energetically less favorable and thus absent for the corresponding head-to-tail configuration as disclosed for the first time. In view of technological implementations, the knowledge gained on the single-crystal references is transferred to thin-film diodes composed of either stacked PFP/PEN bilayers or mixed PFP:PEN heterojunction interfaces. As demonstrated, their electronic and electroluminescent behavior can be consistently described by the absence or presence of interfacial CT states. Thus, our results hint at the thorough design of D-A interfaces to achieve the highest device performances.

11.
Adv Mater ; 32(43): e2003596, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945031

RESUMEN

Unlike the conventional p-doping of organic semiconductors (OSCs) using acceptors, here, an efficient doping concept for diketopyrrolopyrrole-based polymer PDPP[T]2 -EDOT (OSC-1) is presented using an oxidized p-type semiconductor, Spiro-OMeTAD(TFSI)2 (OSC-2), exploiting electron transfer from HOMOOSC-1 to HOMOOSC-2 . A shift of work function toward the HOMOOSC-1 upon doping is confirmed by ultraviolet photoelectron spectroscopy (UPS). Detailed X-ray photoelectron spectroscopy (XPS) and UV-vis-NIR absorption studies confirm HOMOOSC-1 to HOMOOSC-2 electron transfer. The reduction products of Spiro-OMeTAD(TFSI)2 to Spiro-OMeTAD(TFSI) and Spiro-OMeTAD is also confirmed and their relative amounts in doped samples is determined. Mott-Schottky analysis shows two orders of magnitude increase in free charge carrier density and one order of magnitude increase in the charge carrier mobility. The conductivity increases considerably by four orders of magnitude to a maximum of 10 S m-1 for a very low doping ratio of 8 mol%. The doped polymer films exhibit high thermal and ambient stability resulting in a maximum power factor of 0.07 µW m-1  K-2 at a Seebeck coefficient of 140 µV K-1 for a very low doping ratio of 4 mol%. Also, the concept of HOMOOSC-1 to HOMOOSC-2 electron transfer is a highly efficient, stable and generic way to p-dope other conjugated polymers.

12.
Nano Lett ; 20(9): 6452-6458, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786935

RESUMEN

Many nanotechnology materials rely on a hierarchical structure ranging from the nanometer scale to the micrometer scale. Their interplay determines the nanoscale optical coherence length, which plays a key role in energy transport and radiative decay and, thus, the optoelectronic applications. However, it is challenging to detect optical coherence length in multiscale structures with existing methods. Techniques such as atomic force microscopy and transmission electron microscopy are not sensitive to optical coherence length. Linear absorption and fluorescence spectroscopy methods, on the other hand, were generally limited by inhomogeneous broadening, which often obstructs the determination of nanoscale coherence length. Here, we carry out coherent two-dimensional microspectroscopy to obtain a map of the local optical coherence length within a hierarchically structured molecular film. Interestingly, the nanoscale coherence length is found to correlate with microscale topography, suggesting a perspective for controlling structural coherence on molecular length scales by appropriate microscopic growth conditions.

13.
J Am Chem Soc ; 142(19): 8897-8909, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32302135

RESUMEN

A series of copper(I) complexes bearing a cyclic (amino)(aryl)carbene (CAArC) ligand with various complex geometries have been investigated in great detail with regard to their structural, electronic, and photophysical properties. Comparison of [CuX(CAArC)] (X = Br (1), Cbz (2), acac (3), Ph2acac (4), Cp (5), and Cp* (6)) with known CuI complexes bearing cyclic (amino)(alkyl), monoamido, or diamido carbenes (CAAC, MAC, or DAC, respectively) as chromophore ligands reveals that the expanded π-system of the CAArC leads to relatively low energy absorption maxima between 350 and 550 nm in THF with high absorption coefficients of 5-15 × 103 M-1 cm-1 for 1-6. Furthermore, 1-5 show intense deep red to near-IR emission involving their triplet excited states in the solid state and in PMMA films with λemmax = 621-784 nm. Linear [Cu(Cbz)(DippCAArC)] (2) has been found to be an exceptional deep red (λmax = 621 nm, ϕ = 0.32, τav = 366 ns) thermally activated delayed fluorescence (TADF) emitter with a radiative rate constant kr of ca. 9 × 105 s-1, exceeding those of commercially employed IrIII- or PtII-based emitters. Time-resolved transient absorption and fluorescence upconversion experiments complemented by quantum chemical calculations employing Kohn-Sham density functional theory and multireference configuration interaction methods as well as temperature-dependent steady-state and time-resolved luminescence studies provide a detailed picture of the excited-state dynamics of 2. To demonstrate the potential applicability of this new class of low-energy emitters in future photonic applications, such as nonclassical light sources for quantum communication or quantum cryptography, we have successfully conducted single-molecule photon-correlation experiments of 2, showing distinct antibunching as required for single-photon emitters.

14.
Chemistry ; 25(68): 15463-15471, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31478580

RESUMEN

Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6-dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed-shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two-photon absorption spectroscopy and OLED devices.

15.
Adv Mater ; 31(19): e1900652, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30924203

RESUMEN

Among functional organic materials, low-dimensional molecular crystals represent an intriguing class of solids due to their tunable electronic, magnetic, and structural ground states. This work investigates Cu(Me,Br-dicyanoquinonediimine)2 single crystals, a charge transfer radical ion salt which exhibits a Peierls insulator-to-metal transition at low temperatures. The ultrafast electron diffraction experiments observe collective atomic motions at the photoinduced phase transition with a temporal resolution of 1 ps. These measurements reveal the photoinduced lifting of the insulating phase to happen within 2 ps in the entire crystal volume with an external quantum efficiency of conduction band electrons per absorbed photon of larger than 20. This huge cooperativity of the system, directly monitored during the phase transition, is accompanied by specific intramolecular motions. However, only an additional internal volume expansion, corresponding to a pressure relief, allows the metallic state for long times to be optically locked. The identification of the microscopic molecular pathways that optically drive the structural Peierls transition in Cu(DCNQI)2 highlights the tailored response to external stimuli available in these complex functional materials, a feature enabling high-speed optical sensing and switching with outstanding signal responsivity.

16.
Opt Express ; 26(4): 3915-3925, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475248

RESUMEN

We have developed coherent two-dimensional (2D) fluorescence micro-spectroscopy which probes the nonlinear optical response at surfaces via fluorescence detection with sub-micron spatial resolution. This enables the investigation of microscopic variations in heterogeneous systems. An LCD-based pulse shaper in 4f geometry is used to create collinear trains of 12-fs visible/NIR laser pulses in the focus of an NA = 1.4 immersion-oil microscope objective. We demonstrate the capabilities of the new method by presenting 2D spectra, analyzed via phase cycling, as a function of position of selected sub-micron regions from a laterally nanostructured polycrystalline thin film of fluorinated zinc phthalocyanine (F16ZnPc).

17.
Opt Express ; 25(6): 6678-6689, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28381012

RESUMEN

The spatially and spectrally resolved photoluminescence (PL) of the archetypical molecular dye ZnPc in periodically ordered organic-silver nanocavities (NC) is investigated by confocal microscopy. The presented approach of long-range ordered pillar structures prepared by nanosphere lithography not only combines the advantages of nanopatterning and localized surface plasmon resonances (LSPR) to improve the light out-coupling efficiency in metal-organic hybrid assemblies, but allows for distinction between geometrical and plasmonic contributions to the PL enhancement, the latter supported by complementary finite-difference-time-domain (FDTD) simulations. Supplementary time-resolved optical measurements indicate exciton lifetime reduction by at least one order of magnitude to be the main mechanism for PL increase amongst the improvement of geometrical out-coupling.

18.
Adv Mater ; 29(13)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28195424

RESUMEN

Thermoelectric generator composed of crystalline radical ion salts: The unipolar charge transport along the molecular stacks facilitates complementary p- and n-type organic thermoelectric materials of high electrical conductivity and of 1D electronic structure. The specific power output of 5 mW cm-2 and the zT > 0.15 below 40 K demonstrate a new field of low-temperature thermoelectric applications unlocked by organic metals.

19.
Phys Chem Chem Phys ; 19(3): 2434-2448, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28058427

RESUMEN

Perylene-based compounds are promising materials for opto-electronic thin film devices but despite intense investigations, important details of their electronic structure are still under debate. For perylene-3,4,9,10-tetracarboxylic dianhydrid (PTCDA), the theoretical models predict a different relative energetic order of Frenkel and Charge Transfer (CT) states. Additionally, while one model indicates strong differences between PTCDA on one hand and other perylene-based compounds on the other, recent ab initio computations indicate electronic properties of all perylene-based compounds to resemble each other. Finally, the models disagree about the amount of mixing between CT and Frenkel states. Definitive answers to these questions are difficult because the approaches use various approximations. Up to date, the ab initio based methods employ rather small model systems and neglect environmental effects. In the present work, we improve our former approach by analyzing the effects of the various simplifications. In more detail, we increase the size of the model systems, include environmental effects and investigate the influence of exciton-phonon couplings on the absorption spectrum. The computations for larger aggregates were performed with the ZINDO/S approach, because benchmark computations show that it provides accurate vertical excitation energies for Frenkel, as well as CT states.

20.
Chemistry ; 23(9): 2206-2216, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-27911043

RESUMEN

The members of a series of linear and trigonal copper(I) complexes bearing a cyclic alkyl(amino)carbene (CAAC) ligand show surprising photophysical properties compared to those of the corresponding N-heterocyclic carbene (NHC) complexes. Whereas the linear NHC complexes [CuX(NHC)] are almost non-emissive, [CuX(CAAC)] (X=Cl, Br, I) and [Cu(CAAC)2 ]PF6 show very bright emissions from their triplet excited states in the blue to green region, displaying quantum yields of up to 65 % in the solid state, even though the π-acceptor comprises only the carbene C and N atoms with no other π conjugation. [Cu(CAAC)2 ]PF6 is the fastest CuI -based triplet state emitter characterized to date, not displaying thermally activated delayed fluorescence (TADF), with an intrinsic lifetime of only 10.6 µs, that is, kr =9.4×104  s-1 , competitive with many PtII - and IrIII -based emitters. In order to test the stability of such linear copper CAAC complexes in devices, some of our compounds have been applied in proof-of-principle organic light-emitting diodes (OLEDs). This case study thus demonstrates for the first time the use of CAACs as suitable π-chromophores for CuI -based phosphorescent emitters, and their implementation in OLEDs underlines the general applicability of this class of ligands in materials science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...