Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(36): 17707-17711, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427508

RESUMEN

Birch tar production by Neanderthals-used for hafting tools-has been interpreted as one of the earliest manifestations of modern cultural behavior. This is because birch tar production per se was assumed to require a cognitively demanding setup, in which birch bark is heated in anaerobic conditions, a setup whose inherent complexity was thought to require modern levels of cognition and cultural transmission. Here we demonstrate that recognizable amounts of birch tar were likely a relatively frequent byproduct of burning birch bark (a natural tinder) under common, i.e., aerobic, conditions. We show that when birch bark burns close to a vertical to subvertical hard surface, such as an adjacent stone, birch tar is naturally deposited and can be easily scraped off the surface. The burning of birch bark near suitable surfaces provides useable quantities of birch tar in a single work session (3 h; including birch bark procurement). Chemical analysis of the resulting tar showed typical markers present in archaeological tar. Mechanical tests verify the tar's suitability for hafting and for hafted tools use. Given that similarly sized stones as in our experiment are frequently found in archaeological contexts associated with Neanderthals, the cognitively undemanding connection between burning birch bark and the production of birch tar would have been readily discoverable multiple times. Thus, the presence of birch tar alone cannot indicate the presence of modern cognition and/or cultural behaviors in Neanderthals.


Asunto(s)
Arqueología , Conducta Animal/fisiología , Betula , Cognición/fisiología , Hombre de Neandertal/fisiología , Animales
2.
Nat Ecol Evol ; 2(7): 1087-1092, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29942012

RESUMEN

Animal resources have been part of hominin diets since around 2.5 million years ago, with sharp-edged stone tools facilitating access to carcasses. How exactly hominins acquired animal prey and how hunting strategies varied through time and space is far from clear. The oldest possible hunting weapons known from the archaeological record are 300,000 to 400,000-year-old sharpened wooden staves. These may have been used as throwing and/or close-range thrusting spears, but actual data on how such objects were used are lacking, as unambiguous lesions caused by such weapon-like objects are unknown for most of human prehistory. Here, we report perforations observed on two fallow deer skeletons from Neumark-Nord, Germany, retrieved during excavations of 120,000-year-old lake shore deposits with abundant traces of Neanderthal presence. Detailed studies of the perforations, including micro-computed tomography imaging and ballistic experiments, demonstrate that they resulted from the close-range use of thrusting spears. Such confrontational ways of hunting require close cooperation between participants, and over time may have shaped important aspects of hominin biology and behaviour.


Asunto(s)
Arqueología , Hombre de Neandertal , Comportamiento del Uso de la Herramienta , Animales , Evolución Biológica , Dieta , Alemania , Armas
3.
PLoS One ; 10(8): e0134570, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26284785

RESUMEN

Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture. These results demonstrate that different gestures used in 'common' prehistoric tasks can be distinguished quantitatively based on their dynamic parameters. Future research needs to assess our ability to reconstruct these parameters from observed use-wear patterns.


Asunto(s)
Gestos , Actividad Motora/fisiología , Comportamiento del Uso de la Herramienta/fisiología , Humanos , Desempeño Psicomotor , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...