Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (209)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39141534

RESUMEN

Robotic-assisted bronchoscopy (RAB) allows for targeted bronchoscopic biopsy in the lung. A robotic-assisted bronchoscope is navigated through the airways under direct vision after establishing a pathway to a target lesion based on mapping performed on a 3-dimensional (3D) lung and airway reconstruction obtained from a pre-procedure thin-slice computed tomography chest. RAB has maneuverability to distal airways throughout the lung, precise catheter tip articulation, and stability with the robotic arm. Adjunct imaging tools such as fluoroscopy, radial endobronchial ultrasound (r-EBUS), and cone beam computed tomography (CBCT) can be used with RAB. Studies using shape-sensing robotic-assisted bronchoscopy (ssRAB) have shown favorable diagnostic outcomes and safety profiles in both malignant and non-malignant processes for the biopsy of peripheral pulmonary lesions (PPLs). A 1.1 mm cryoprobe combined with ssRAB has been shown to be safe and effective for the diagnosis of PPLs compared to a traditional bronchoscopy with forceps biopsy. This technique can also be used for targeted lung sampling in benign processes. The aim of this article is to describe a stepwise approach to performing RAB combined with fluoroscopy, r-EBUS, and CBCT to obtain targeted transbronchial lung cryobiopsies (TBLC).


Asunto(s)
Broncoscopía , Pulmón , Imagen Multimodal , Procedimientos Quirúrgicos Robotizados , Broncoscopía/métodos , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Procedimientos Quirúrgicos Robotizados/instrumentación , Pulmón/diagnóstico por imagen , Pulmón/cirugía , Pulmón/patología , Imagen Multimodal/métodos
2.
J Fungi (Basel) ; 10(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39057332

RESUMEN

Invasive fungal diseases (IFDs) comprise a growing healthcare burden, especially given the expanding population of immunocompromised hosts. Early diagnosis of IFDs is required to optimise therapy with antifungals, especially in the setting of rising rates of antifungal resistance. Molecular techniques including nucleic acid amplification tests and whole genome sequencing have potential to offer utility in overcoming limitations with traditional phenotypic testing. However, standardisation of methodology and interpretations of these assays is an ongoing undertaking. The utility of targeted Aspergillus detection has been well-defined, with progress in investigations into the role of targeted assays for Candida, Pneumocystis, Cryptococcus, the Mucorales and endemic mycoses. Likewise, whilst broad-range polymerase chain reaction assays have been in use for some time, pathology stewardship and optimising diagnostic yield is a continuing exercise. As costs decrease, there is also now increased access and experience with whole genome sequencing, including metagenomic sequencing, which offers unparalleled resolution especially in the investigations of potential outbreaks. However, their role in routine diagnostic use remains uncommon and standardisation of techniques and workflow are required for wider implementation.

3.
J Diabetes Metab Disord ; 23(1): 385-394, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932889

RESUMEN

Purpose: Metformin has been the first-line treatment for type 2 diabetes mellitus as monotherapy or concomitantly with other glucose-lowering therapies due to its efficacy, safety, and affordability. Recent studies on the cardioprotective and renoprotective benefits of glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-glucose cotransporter-2 inhibitors (SGLT-2i) have influenced guidelines on diabetes management to consider these newer agents as alternative first-line therapies. This paper explores the literature supporting the use of these newer medications alone as a first-line agent in place of metformin. Methods: A review of citations from the most recent guidelines along with a literature search via PubMed was completed to review (1) what, historically, made metformin first-line (2) if newer agents' benefits remain when used without metformin (3) how newer agents compare against metformin when used without it. Results: Evaluation of the historical literature was completed to summarize the key findings that support metformin as a first-line therapy agent. Additionally, an assessment of the literature reveals that the benefits of these two newer classes are independent of concomitant metformin therapy. Finally, studies have demonstrated that these newer agents can be either non-inferior or sometimes superior to metformin when used as monotherapy. Conclusion: GLP-1 RA and SGLT-2i can be considered as first line monotherapies for select patients with high cardiovascular risks, renal disease, or weight loss requirements. However, pharmacoeconomic considerations along with lesser long-term safety outcomes should limit these agents' use in certain patients as the management of diabetes continues to transition towards shared-decision making. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01406-6.

4.
J Am Chem Soc ; 146(20): 14067-14078, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728688

RESUMEN

Circular trinuclear helicates have been synthesized from a bis-biphenol strand (LH4), titanium isopropoxide, and various diimine ligands. These self-assembled architectures constructed around three TiO4N2 nodes have a heterochiral structure (C1 symmetry) when 2,2'-bipyridine (A), 4,4'-dimethyl-2,2'-bipyridine (B), 4,4'-bromo-2,2'-bipyridine (C), or 4,4'-dimethyl-2,2'-bipyrimidine (D) is employed. Within these complexes, one nitrogen ligand is endo-positioned inside the metallo-macrocycle, whereas the other two diimine ligands point outside the helicate framework. This investigation highlights that the nitrogen ligand which does not participate in the helicate framework of the complex controls the overall symmetry of the helicate since the 2,2'-bipyrimidine chelate (F) ends in the formation of a homochiral aggregate (C3 symmetry). The lack of symmetry found in the solid state for the trinuclear species ([Ti3L3(B)3], [Ti3L3(C)3], and [Ti3L3(D)3]) is observed for these complexes in solution (dichloromethane or chloroform). Remarkably, the 2,2'-bipyrazine ligand (ligand E) ends in the formation of a hexameric aggregate formulated as [Ti6L6(E)6], whereas the use of 4,4'-dimethyl-2,2'-bipyrimidine (ligand D) permits to generate the dinuclear complexes ([Ti2L(D)2(OiPr)4] and [Ti2L2(D)2]) in addition to the trimeric structure [Ti3L3(D)3]. The behavior of [Ti3L3(A)3] in solution, on the other hand, is unique since an equilibrium between the homochiral and the heterochiral form is reached within 17 days after the complex has been dissolved in dichloromethane (C3-[Ti3L3(A)3]/C1-[Ti3L3(A)3] ratio = 0.3). In chloroform, the heterochiral form of [Ti3L3(A)3] is stable for the same period of time, evidencing the dependence of this stereochemical transformation toward the solvent medium. The thermodynamic and kinetic parameters linked to this stereochemical equilibrium have been obtained and point to the fact that the transformation is intramolecular and not induced by the presence of external ligands. The thermodynamic constant of the C1-[Ti3L3(A)3]/C3-[Ti3L3(A)3] equilibrium is found to be K = 0.34 ± 10%. Further evidence to rationalize this solvent-induced symmetry switch is obtained via a DFT calculation and classical molecular dynamics. In particular, this computational investigation elucidates the reason why the stereochemical transformation of a heterochiral architecture into a homochiral structure is possible only for a trinuclear assembly containing ligand A.

5.
Chemistry ; 30(23): e202400458, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38427204

RESUMEN

A [2+3] chiral covalent organic cage is produced through a dynamic covalent chemistry approach by mixing two readily available building units, viz. an enantiopure 3,3'-diformyl 2,2'-BINOL compound (A) with a triamino spacer (B). The two enantiomeric (R,R,R) and (S,S,S) forms of the cage C are formed nearly quantitatively thanks to the reversibility of the imine linkage. The X-ray diffraction analysis of cage (S,S,S)-C highlights that the six OH functions of the BINOL fragments are positioned inside the cage cavity. Upon reduction of the imine bonds of cage C, the amine cage D is obtained. The ability of the cage D to host the 1-phenylethylammonium cation (EH+) as a guest is evaluated through UV, CD and DOSY NMR studies. A higher binding constant for (R)-EH+ cation (Ka=1.7 106±10 % M-1) related to (S)-EH+ (Ka=0.9 106±10 % M-1) is determined in the presence of the (R,R,R)-D cage. This enantiopreference is in close agreement with molecular dynamics simulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA