Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38248405

RESUMEN

Aphanizomenon is a genus of cyanobacteria that is filamentous and nitrogen-fixing and inhabits aquatic environments. This genus is known as one of the major producers of cyanotoxins that can affect water quality after the bloom period. In this study, an electrochemical aptasensor is demonstrated using a specific aptamer to detect Aphanizomenon sp. ULC602 for the rapid and sensitive detection of this bacterium. The principal operation of the generated aptasensor is based on the conformational change in the aptamer attached to the electrode surface in the presence of the target bacterium, resulting in a decrease in the current peak, which is measured by square-wave voltammetry (SWV). This aptasensor has a limit of detection (LOD) of OD750~0.3, with an extension to OD750~1.2 and a sensitivity of 456.8 µA·OD750-1·cm-2 without interference from other cyanobacteria. This is the first aptasensor studied that provides rapid detection to monitor the spread of this bacterium quickly in a targeted manner.


Asunto(s)
Cianobacterias , Toxinas de Cianobacterias , Electrodos , Agua Dulce , Límite de Detección , Oligonucleótidos
2.
Front Microbiol ; 14: 1220818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188574

RESUMEN

Aphanizomenon sp. ULC602, recently isolated in a Belgian lake, is a filamentous, nitrogen-fixing, freshwater cyanobacterium that is one of the primary producers of cyanotoxins following its bloom formation, causing water contamination. This study aims to evaluate the effects of growing conditions and essential nutrients on the growth of Aphanizomenon sp. ULC602 via its production of chlorophyll-a (Chlo-a). Our results indicated that this bacterium could grow well at temperatures ranging from 18 to 25°C with an optimal pH of 6.0-7.5 under continuous lighting. It grew slowly in the absence of a carbon source or at lower carbon concentrations. The addition of nitrogen from nitrate and urea led to a less than 50% reduction of Chlo-a content compared to the medium lacking nitrogen. The iron bioavailability significantly stimulated the Chlo-a production, but it was saturated by an iron concentration of 0.115 mM. Moreover, a decrease in Chlo-a biomass was observed under sulfur deficiency. The bacterium could not grow well in media containing various phosphorus sources. In conclusion, as the growth and consequent forming bloom of cyanobacteria can be stimulated or inhibited by environmental conditions and eutrophication, our investigation could contribute to further studies to control the blooming of the target bacterium in freshwater.

3.
Int J Biol Macromol ; 165(Pt A): 835-841, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33017606

RESUMEN

Heterologous proteins anchoring on the living cell surface have recently received significant attention due to their promising application potential in various areas of biotechnology. This work presents an overview of displaying strategies for oxidoreductases, enzymes important in applied biocatalysis. Anchoring systems for oxidoreductase display on Gram-positive and Gram-negative bacteria and yeasts were analysed. The effect of cell surface display on enzyme activity and stability was demonstrated. It was also shown that besides the activity and stability improvement, the cell surface display strategy in case of oxidoreductases could solve the problem of cofactor regeneration via co-displaying enzyme cascades. Cell surface displayed oxidoreductase applications were also discussed. It was concluded that the highest potential is in the areas of microbial fuel cells, chemical synthesis, biosensors, and bioremediation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Técnicas de Visualización de Superficie Celular , Bacterias Gramnegativas , Bacterias Grampositivas , Oxidorreductasas , Biodegradación Ambiental , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Oxidorreductasas/biosíntesis , Oxidorreductasas/química , Oxidorreductasas/genética
4.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471049

RESUMEN

Lactic acid bacteria (LAB) have attracted increasing interest recently as cell factories for the production of proteins as well as a carrier of proteins that are of interest for food and therapeutic applications. In this present study, we exploit a lactobacillal food-grade expression system derived from the pSIP expression vectors using the alr (alanine racemase) gene as the selection marker for the expression and cell-surface display of a chitosanase in Lactobacillus plantarum using two truncated forms of a LP × TG anchor. CsnA, a chitosanase from Bacillus subtilis 168 (ATCC23857), was fused to two different truncated forms (short-S and long-L anchors) of an LP × TG anchor derived from Lp_1229, a key-protein for mannose-specific adhesion in L. plantarum WCFS1. The expression and cell-surface display efficiency driven by the food-grade alr-based system were compared with those obtained from the erm-based pSIP system in terms of enzyme activities and their localisation on L. plantarum cells. The localization of the protein on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest enzymatic activity of CsnA-displaying cells was obtained from the strain carrying the alr-based expression plasmid with short cell wall anchor S. However, the attachment of chitosanase on L. plantarum cells via the long anchor L was shown to be more stable compared with the short anchor after several repeated reaction cycles. CsnA displayed on L. plantarum cells is catalytically active and can convert chitosan into chito-oligosaccharides, of which chitobiose and chitotriose are the main products.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Microbiología de Alimentos , Glicósido Hidrolasas/metabolismo , Lactobacillus plantarum/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Quitosano/metabolismo
5.
Catalysts ; 9(5): 443, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31595189

RESUMEN

Lysin motif (LysM) domains are found in many bacterial peptidoglycan hydrolases. They can bind non-covalently to peptidoglycan and have been employed to display heterologous proteins on the bacterial cell surface. In this study, we aimed to use a single LysM domain derived from a putative extracellular transglycosylase Lp_3014 of Lactobacillus plantarum WCFS1 to display two different lactobacillal ß-galactosidases, the heterodimeric LacLM-type from Lactobacillus reuteri and the homodimeric LacZ-type from Lactobacillus delbrueckii subsp. bulgaricus, on the cell surface of different Lactobacillus spp. The ß-galactosidases were fused with the LysM domain and the fusion proteins, LysM-LacLMLreu and LysM-LacZLbul, were successfully expressed in Escherichia coli and subsequently displayed on the cell surface of L. plantarum WCFS1. ß-Galactosidase activities obtained for L. plantarum displaying cells were 179 and 1153 U per g dry cell weight, or the amounts of active surface-anchored ß-galactosidase were 0.99 and 4.61 mg per g dry cell weight for LysM-LacLMLreu and LysM-LacZLbul, respectively. LysM-LacZLbul was also displayed on the cell surface of other Lactobacillus spp. including L. delbrueckii subsp. bulgaricus, L. casei and L. helveticus, however L. plantarum is shown to be the best among Lactobacillus spp. tested for surface display of fusion LysM-LacZLbul, both with respect to the immobilization yield as well as the amount of active surface-anchored enzyme. The immobilized fusion LysM-ß-galactosidases are catalytically efficient and can be reused for several repeated rounds of lactose conversion. This approach, with the ß-galactosidases being displayed on the cell surface of non-genetically modified food-grade organisms, shows potential for applications of these immobilized enzymes in the synthesis of prebiotic galacto-oligosaccharides.

6.
Microb Cell Fact ; 18(1): 76, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31023309

RESUMEN

BACKGROUND: Lactic acid bacteria (LAB) are important microorganisms in the food and beverage industry. Due to their food-grade status and probiotic characteristics, several LAB are considered as safe and effective cell-factories for food-application purposes. In this present study, we aimed at constitutive expression of a mannanase from Bacillus licheniformis DSM13, which was subsequently displayed on the cell surface of Lactobacillus plantarum WCFS1, for use as whole-cell biocatalyst in oligosaccharide production. RESULTS: Two strong constitutive promoters, Pgm and SlpA, from L. acidophilus NCFM and L. acidophilus ATCC4356, respectively, were used to replace the inducible promoter in the lactobacillal pSIP expression system for the construction of constitutive pSIP vectors. The mannanase-encoding gene (manB) was fused to the N-terminal lipoprotein anchor (Lp_1261) from L. plantarum and the resulting fusion protein was cloned into constitutive pSIP vectors and expressed in L. plantarum WCFS1. The localization of the protein on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The mannanase activity and the reusability of the constructed L. plantarum displaying cells were evaluated. The highest mannanase activities on the surface of L. plantarum cells obtained under the control of the Pgm and SlpA promoters were 1200 and 3500 U/g dry cell weight, respectively, which were 2.6- and 7.8-fold higher compared to the activity obtained from inducible pSIP anchoring vectors. Surface-displayed mannanase was shown to be able to degrade galactomannan into manno-oligosaccharides (MOS). CONCLUSION: This work demonstrated successful displaying of ManB on the cell surface of L. plantarum WCFS1 using constitutive promoter-based anchoring vectors for use in the production of manno-oligosaccharides, which are potentially prebiotic compounds with health-promoting effects. Our approach, where the enzyme of interest is displayed on the cell surface of a food-grade organism with the use of strong constitutive promoters, which continuously drive synthesis of the recombinant protein without the need to add an inducer or change the growth conditions of the host strain, should result in the availability of safe, stable food-grade biocatalysts.


Asunto(s)
Bacillus licheniformis/enzimología , Técnicas de Visualización de Superficie Celular , Lactobacillus plantarum/genética , beta-Manosidasa/biosíntesis , Bacillus licheniformis/genética , Biocatálisis , Clonación Molecular , Vectores Genéticos , Lactobacillus plantarum/metabolismo , Oligosacáridos/biosíntesis , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , beta-Manosidasa/genética
7.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813223

RESUMEN

ß-Galactosidase encoding genes lacLM from Lactobacillus helveticus DSM 20075 were cloned and successfully overexpressed in Escherichia coli and Lactobacillus plantarum using different expression systems. The highest recombinant ß-galactosidase activity of ∼26 kU per L of medium was obtained when using an expression system based on the T7 RNA polymerase promoter in E. coli, which is more than 1000-fold or 28-fold higher than the production of native ß-galactosidase from L. helveticus DSM 20075 when grown on glucose or lactose, respectively. The overexpression in L. plantarum using lactobacillal food-grade gene expression system resulted in ∼2.3 kU per L of medium, which is approximately 10-fold lower compared to the expression in E. coli. The recombinant ß-galactosidase from L. helveticus overexpressed in E. coli was purified to apparent homogeneity and subsequently characterized. The Km and vmax values for lactose and o-nitrophenyl-ß-d-galactopyranoside (oNPG) were 15.7 ± 1.3 mM, 11.1 ± 0.2 µmol D-glucose released per min per mg protein, and 1.4 ± 0.3 mM, 476 ± 66 µmol o-nitrophenol released per min per mg protein, respectively. The enzyme was inhibited by high concentrations of oNPG with Ki,s = 3.6 ± 0.8 mM. The optimum pH for hydrolysis of both substrates, lactose and oNPG, is pH 6.5 and optimum temperatures for these reactions are 60 and 55 °C, respectively. The formation of galacto-oligosaccharides (GOS) in discontinuous mode using both crude recombinant enzyme from L. plantarum and purified recombinant enzyme from E. coli revealed high transgalactosylation activity of ß-galactosidases from L. helveticus; hence, this enzyme is an interesting candidate for applications in lactose conversion and GOS formation processes.


Asunto(s)
Industria Lechera , Lactobacillus helveticus/enzimología , Proteínas Recombinantes/metabolismo , Biocatálisis , Estabilidad de Enzimas , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Lactobacillus helveticus/crecimiento & desarrollo , Temperatura , Factores de Tiempo , Trisacáridos/metabolismo
8.
J Agric Food Chem ; 65(14): 2965-2976, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28319379

RESUMEN

Two ß-galactosidases from Lactobacillus, including a heterodimeric LacLM type enzyme from Lactobacillus reuteri L103 and a homodimeric LacZ type ß-galactosidase from Lactobacillus bulgaricus DSM 20081, were studied for immobilization on chitin using a carbohydrate-binding domain (chitin-binding domain, ChBD) from a chitinolytic enzyme. Three recombinant enzymes, namely, LacLM-ChBD, ChBD-LacLM, and LacZ-ChBD, were constructed and successfully expressed in Lactobacillus plantarum WCFS1. Depending on the structure of the enzymes, either homodimeric or heterodimeric, as well as the positioning of the chitin-binding domain in relation to the catalytic domains, that is, upstream or downstream of the main protein, the expression in the host strain and the immobilization on chitin beads were different. Most constructs showed a high specificity for the chitin in immobilization studies; thus, a one-step immobilizing procedure could be performed to achieve up to 100% yield of immobilization without the requirement of prior purification of the enzyme. The immobilized-on-chitin enzymes were shown to be more stable than the corresponding native enzymes; especially the immobilized LacZ from L. bulgaricus DSM20081 could retain 50% of its activity when incubated at 37 °C for 48 days. Furthermore, the immobilized enzymes could be recycled for conversion up to eight times with the converting ability maintained at 80%. These results show the high potential for application of these immobilized enzymes in lactose conversion on an industrial scale.

9.
Microb Cell Fact ; 15(1): 169, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27716231

RESUMEN

BACKGROUND: Lactobacillus plantarum is considered as a potential cell factory because of its GRAS (generally recognized as safe) status and long history of use in food applications. Its possible applications include in situ delivery of proteins to a host, based on its ability to persist at mucosal surfaces of the human intestine, and the production of food-related enzymes. By displaying different enzymes on the surface of L. plantarum cells these could be used as whole-cell biocatalysts for the production of oligosaccharides. In this present study, we aimed to express and display a mannanase and a chitosanase on the cell surface of L. plantarum. RESULTS: ManB, a mannanase from Bacillus licheniformis DSM13, and CsnA, a chitosanase from Bacillus subtilis ATCC 23857 were fused to different anchoring motifs of L. plantarum for covalent attachment to the cell surface, either via an N-terminal lipoprotein anchor (Lp_1261) or a C-terminal cell wall anchor (Lp_2578), and the resulting fusion proteins were expressed in L. plantarum WCFS1. The localization of the recombinant proteins on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest mannanase and chitosanase activities obtained for displaying L. plantarum cells were 890 U and 1360 U g dry cell weight, respectively. In reactions with chitosan and galactomannans, L. plantarum CsnA- and ManB-displaying cells produced chito- and manno-oligosaccharides, respectively, as analyzed by high performance anion exchange chromatography (HPAEC) and mass spectrometry (MS). Surface-displayed ManB is able to break down galactomannan (LBG) into smaller manno-oligosaccharides, which can support growth of L. plantarum. CONCLUSION: This study shows that mannanolytic and chitinolytic enzymes can be anchored to the cell surface of L. plantarum in active forms. L. plantarum chitosanase- and mannanase-displaying cells should be of interest for the production of potentially 'prebiotic' oligosaccharides. This approach, with the enzyme of interest being displayed on the cell surface of a food-grade organism, may also be applied in production processes relevant for food industry.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Glicósido Hidrolasas/metabolismo , Lactobacillus plantarum/enzimología , Lactobacillus plantarum/genética , beta-Manosidasa/metabolismo , Biocatálisis , Clonación Molecular , Industria de Alimentos/métodos , Galactosa/análogos & derivados , Glicósido Hidrolasas/genética , Humanos , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Lipoproteínas/metabolismo , Mananos/metabolismo , Oligosacáridos/metabolismo , Prebióticos , Proteínas Recombinantes/metabolismo , beta-Manosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...