Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Med Imaging ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37936441

RESUMEN

INTRODUCTION: This paper presents a novel approach for detecting abnormality in coronary arteries using MRI data in RGB images. The study evaluates the test accuracy of the weak classifiers and the test accuracy and F1 score of the strong classifier. METHODS: The method involves separating the image into information planes, including R, G, and B color space, or bit-planes, and training a VGG-like convolutional neural network model on each plane separately, referred to as a "weak classifier." The classification results of these planes are aggregated using a proposed soft voting method, forming a "strong classifier," with the weights for the aggregation determined by the model's performance on the training set. RESULTS: The results indicate that the strong classifier achieves a test accuracy and F1 score of around 68% to 74% on our private coronary artery dataset. Moreover, by aggregating the top three highest bit-plane levels in a grayscale image, the accuracy is slightly lower than that of the three color spaces but requires a significantly smaller CNN model of nearly 4M parameters. CONCLUSION: The potential of bit-planes in reducing model storage costs is suggested. This approach holds promise for improving the detection of abnormalities in coronary arteries using MRI data.

2.
Int J Neurosci ; 132(7): 689-698, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33045895

RESUMEN

BACKGROUND AND OBJECTIVES: Dementia is one of the brain diseases with serious symptoms such as memory loss, and thinking problems. According to the World Alzheimer Report 2016, in the world, there are 47 million people having dementia and it can be 131 million by 2050. There is no standard method to diagnose dementia, and consequently unable to access the treatment effectively. Hence, the computational diagnosis of the disease from brain Magnetic Resonance Image (MRI) scans plays an important role in supporting the early diagnosis. Alzheimer's Disease (AD), a common type of Dementia, includes problems related to disorientation, mood swings, not managing self-care, and behavioral issues. In this article, we present a new computational method to diagnosis Alzheimer's disease from 3D brain MR images. METHODS: An efficient approach to diagnosis Alzheimer's disease from brain MRI scans is proposed comprising two phases: I) segmentation and II) classification, both based on deep learning. After the brain tissues are segmented by a model that combines Gaussian Mixture Model (GMM) and Convolutional Neural Network (CNN), a new model combining Extreme Gradient Boosting (XGBoost) and Support Vector Machine (SVM) is used to classify Alzheimer's disease based on the segmented tissues. RESULTS: We present two evaluations for segmentation and classification. For comparison, the new method was evaluated using the AD-86 and AD-126 datasets leading to Dice 0.96 for segmentation in both datasets and accuracies 0.88, and 0.80 for classification, respectively. CONCLUSION: Deep learning gives prominent results for segmentation and feature extraction in medical image processing. The combination of XGboost and SVM improves the results obtained.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...