Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37502921

RESUMEN

While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early ART initiation is not always possible in postnatal pediatric HIV infections, which account for the majority of pediatric HIV cases worldwide. The timing of onset of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear. To gain insight into the dynamics, we utilized mathematical models to investigate the effect of time of ART initiation via latent reservoir size and autologous virus neutralizing antibody responses in delaying viral rebound when treatment is interrupted. We used an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model that mimics breast milk HIV transmission in human infants. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT and either given ART at 4-7 days post-infection (early ART condition), at 2 weeks post-infection (intermediate ART condition), or at 8 weeks post-infection (late ART condition). These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We develop a stochastic mathematical model to investigate the joint effect of latent reservoir size, the autologous neutralizing antibody potency, and CD4+ T cell levels on the time to viral rebound and control of post-rebound viral loads. We find that the latent reservoir size is an important determinant in explaining time to viral rebound by affecting the growth rate of the virus. The presence of neutralizing antibodies also can delay rebound, but we find this effect for high potency antibody responses only.

2.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37427588

RESUMEN

Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence indicates that antibody Fc effector functions may be a previously underappreciated component of maternal immunity against HCMV. We recently reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with protection against cCMV transmission, leading us to hypothesize that additional Fc-mediated antibody functions may be important. In this same cohort of HCMV-transmitting (n = 41) and nontransmitting (n = 40) mother-infant dyads, we report that higher maternal sera antibody-dependent cellular cytotoxicity (ADCC) activation is also associated with lower risk of cCMV transmission. We investigated the relationship between ADCC and IgG responses against 9 viral antigens and found that ADCC activation correlated most strongly with sera IgG binding to the HCMV immunoevasin protein UL16. Moreover, we determined that higher UL16-specific IgG binding and FcγRIII/CD16 engagement were associated with the greatest risk reduction in cCMV transmission. Our findings indicate that ADCC-activating antibodies against targets such as UL16 may represent an important protective maternal immune response against cCMV infection that can guide future HCMV correlates studies and vaccine or antibody-based therapeutic development.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/fisiología , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Antivirales , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G
3.
medRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993668

RESUMEN

Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no licensed vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence from studies of natural infection and HCMV vaccine trials indicates that antibody Fc effector functions may defend against HCMV infection. We previously reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with reduced risk of cCMV transmission, leading us to hypothesize that other Fc-mediated antibody functions may also contribute to protection. In this same cohort of HCMV transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads, we found that higher maternal sera antibody-dependent cellular cytotoxicity (ADCC) activation was also associated with decreased risk of cCMV infection. We determined that NK cell-mediated ADCC responses correlated strongly with anti-HCMV IgG FcγRIII/CD16 activation and IgG binding to the HCMV immunoevasin protein UL16. Notably, anti-UL16 IgG binding and engagement of FcγRIII/CD16 were higher in non-transmitting versus transmitting dyads and interacted significantly with ADCC responses. These findings indicate that ADCC-activating antibodies against novel targets such as UL16 may represent an important protective maternal immune response against cCMV infection, which can guide future HCMV correlates studies and vaccine development.

4.
Front Immunol ; 13: 885272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911681

RESUMEN

Early initiation of antiretroviral therapy (ART) significantly improves clinical outcomes and reduces mortality of infants/children living with HIV. However, the ability of infected cells to establish latent viral reservoirs shortly after infection and to persist during long-term ART remains a major barrier to cure. In addition, while early ART treatment of infants living with HIV can limit the size of the virus reservoir, it can also blunt HIV-specific immune responses and does not mediate clearance of latently infected viral reservoirs. Thus, adjunctive immune-based therapies that are geared towards limiting the establishment of the virus reservoir and/or mediating the clearance of persistent reservoirs are of interest for their potential to achieve viral remission in the setting of pediatric HIV. Because of the differences between the early life and adult immune systems, these interventions may need to be tailored to the pediatric settings. Understanding the attributes and specificities of the early life immune milieu that are likely to impact the virus reservoir is important to guide the development of pediatric-specific immune-based interventions towards viral remission and cure. In this review, we compare the immune profiles of pediatric and adult HIV elite controllers, discuss the characteristics of cellular and anatomic HIV reservoirs in pediatric populations, and highlight the potential values of current cure strategies using immune-based therapies for long-term viral remission in the absence of ART in children living with HIV.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por VIH , Adulto , Niño , Humanos , Lactante , Prevención Secundaria
5.
J Clin Invest ; 132(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35763348

RESUMEN

Human cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and antiviral functions in paired maternal and cord blood sera from HCMV-seropositive transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads identified via a large, US-based, public cord blood bank. We found that high-avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against congenital HCMV transmission and inform HCMV vaccine and immunotherapeutic development.


Asunto(s)
Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Infecciones por Herpesviridae , Anticuerpos Antivirales , Formación de Anticuerpos , Niño , Citomegalovirus , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/uso terapéutico , Infecciones por Herpesviridae/tratamiento farmacológico , Humanos , Inmunoglobulina G , Estudios Prospectivos
6.
Oxid Med Cell Longev ; 2019: 7595126, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885815

RESUMEN

Clinical studies have demonstrated a strong association between both acute toxic exposure and the repetitive, chronic exposure to acetaminophen (APAP) with pulmonary dysfunction. However, the mechanisms underlying this association are unknown. Preclinical reports have demonstrated that significant bronchiolar injury occurs with toxic APAP exposure, but very little information exists on how the distal lung is affected. However, cells in the alveolar space, including the pulmonary epithelium and resident macrophages, express the APAP-metabolizing enzyme CYP2E1 and are a potential source of toxic metabolites and subsequent distal lung injury. Thus, we hypothesized that distal lung injury would occur in a murine model of toxic APAP exposure. Following exposure of APAP (280 mg/kg, IP), adult male mice were found to have significant proximal lung histopathology as well as distal lung inflammation and emphysematous changes. Toxic APAP exposure was associated with increased CYP2E1 expression in the distal lung and accumulation of APAP-protein adducts. This injury was associated with distal lung activation of oxidant stress, endoplasmic reticulum stress, and inflammatory stress response pathways. Our findings confirm that following toxic APAP exposure, distal lung CYP2E1 expression is associated with APAP metabolism, tissue injury, and oxidant, inflammatory, and endoplasmic reticulum signaling. This previously unrecognized injury may help improve our understanding of the relationship between APAP and pulmonary-related morbidity.


Asunto(s)
Acetaminofén/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Enfisema/metabolismo , Pulmón/metabolismo , Animales , Células Cultivadas , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Modelos Animales de Enfermedad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Enfisema/etiología , Enfisema/patología , Estrés del Retículo Endoplásmico , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos ICR , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...