Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 236: 102601, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570083

RESUMEN

Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Neurogénesis , Neurogénesis/fisiología , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Animales , Demencia/fisiopatología , Memoria/fisiología
2.
J Exp Med ; 219(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35984475

RESUMEN

Hippocampal neurogenesis is impaired in Alzheimer's disease (AD) patients and familial Alzheimer's disease (FAD) mouse models. However, it is unknown whether new neurons play a causative role in memory deficits. Here, we show that immature neurons were actively recruited into the engram following a hippocampus-dependent task. However, their recruitment is severely deficient in FAD. Recruited immature neurons exhibited compromised spine density and altered transcript profile. Targeted augmentation of neurogenesis in FAD mice restored the number of new neurons in the engram, the dendritic spine density, and the transcription signature of both immature and mature neurons, ultimately leading to the rescue of memory. Chemogenetic inactivation of immature neurons following enhanced neurogenesis in AD, reversed mouse performance, and diminished memory. Notably, AD-linked App, ApoE, and Adam10 were of the top differentially expressed genes in the engram. Collectively, these observations suggest that defective neurogenesis contributes to memory failure in AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos de la Memoria , Neurogénesis , Animales , Ratones , Enfermedad de Alzheimer/complicaciones , Modelos Animales de Enfermedad , Hipocampo , Trastornos de la Memoria/genética , Ratones Transgénicos , Neurogénesis/genética , Neuronas
4.
Nat Commun ; 11(1): 2484, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424276

RESUMEN

DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair to stave off functional decline remain obscure. We show that HDAC1 modulates OGG1-initated 8-oxoguanine (8-oxoG) repair in the brain. HDAC1-deficient mice display age-associated DNA damage accumulation and cognitive impairment. HDAC1 stimulates OGG1, a DNA glycosylase known to remove 8-oxoG lesions that are associated with transcriptional repression. HDAC1 deficiency causes impaired OGG1 activity, 8-oxoG accumulation at the promoters of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG along with reduced HDAC1 activity and downregulation of a similar gene set in the 5XFAD mouse model of Alzheimer's disease. Notably, pharmacological activation of HDAC1 alleviates the deleterious effects of 8-oxoG in aged wild-type and 5XFAD mice. Our work uncovers important roles for HDAC1 in 8-oxoG repair and highlights the therapeutic potential of HDAC1 activation to counter functional decline in brain aging and neurodegeneration.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Encéfalo/patología , Daño del ADN , ADN Glicosilasas/metabolismo , Histona Desacetilasa 1/metabolismo , Estrés Oxidativo , Acetilación , Envejecimiento/genética , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/fisiopatología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Secuencia de Bases , Benzofenonas/farmacología , Cognición/efectos de los fármacos , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/patología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Ontología de Genes , Guanina/análogos & derivados , Guanina/metabolismo , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Regiones Promotoras Genéticas/genética
5.
Neurobiol Stress ; 10: 100133, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30937343

RESUMEN

Alzheimer's disease (AD) was discovered and the pathological hallmarks were revealed more than a century ago. Subsequently, many remarkable discoveries and breakthroughs provided us with mechanistic insights into the pathogenesis of AD. The identification of the molecular underpinning of the disease not only provided the framework of AD pathogenesis but also targets for therapeutic inventions. Despite all the initial successes, no effective treatment for AD has emerged yet as all the late stages of clinical trials have failed. Many factors ranging from genetic to environmental factors have been critically appraised as the potential causes of AD. In particular, the role of stress on AD has been intensively studied while the relationship between sleep and circadian rhythm disruption (SCRD) and AD have recently emerged. SCRD has always been thought to be a corollary of AD pathologies until recently, multiple lines of evidence converge on the notion that SCRD might be a contributing factor in AD pathogenesis. More importantly, how stress and SCRD intersect and make their concerted contributions to AD phenotypes has not been reviewed. The goal of this literature review is to examine at multiple levels - molecular, cellular (e.g. microglia, gut microbiota) and holistic - how the interaction between stress and SCRD bi-directionally and synergistically exacerbate AD pathologies and cognitive impairment. AD, in turn, worsens stress and SCRD and forms the vicious cycle that perpetuates and amplifies AD.

6.
Cell ; 161(7): 1592-605, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26052046

RESUMEN

Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience-driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next-generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIß (Topo IIß), and knockdown of Topo IIß attenuates both DSB formation and early-response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.


Asunto(s)
Roturas del ADN de Doble Cadena , Neuronas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor de Unión a CCCTC , ADN-Topoisomerasas de Tipo II/análisis , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Etopósido/farmacología , Regulación de la Expresión Génica , Genes fos , Estudio de Asociación del Genoma Completo , Ratones , Proteínas Represoras/metabolismo , Transcriptoma/efectos de los fármacos
7.
Learn Mem ; 21(8): 417-23, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034823

RESUMEN

Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1-/- mice, which are arrhythmic under constant conditions, were examined for hippocampus-dependent memory, LTP at the Schaffer-collateral synapse, and signal transduction activity in the hippocampus. Bmal1-/- mice exhibit impaired contextual fear and spatial memory. Furthermore, LTP in hippocampal slices from Bmal1-/- mice is also significantly decreased relative to that from wild-type mice. Activation of Erk1,2 MAP kinase (MAPK) during training for contextual fear memory and diurnal oscillation of MAPK activity and cAMP in the hippocampus is also lost in Bmal1-/- mice, suggesting that the memory defects are due to reduction of the memory consolidation pathway in the hippocampus. We conclude that critical signaling events in the hippocampus required for memory depend on BMAL1.


Asunto(s)
Relojes Circadianos/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo , Memoria/fisiología , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Actigrafía , Animales , Western Blotting , Electrochoque , Ensayo de Inmunoadsorción Enzimática , Miedo/fisiología , Pie , Reacción Cataléptica de Congelación/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Técnicas de Cultivo de Tejidos
8.
Cell ; 156(1-2): 261-76, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439381

RESUMEN

Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata.


Asunto(s)
Miedo , Memoria a Largo Plazo , Plasticidad Neuronal , Animales , Epigénesis Genética , Hipocampo/metabolismo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Masculino , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Transcriptoma
9.
J Neurosci ; 33(15): 6460-8, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575844

RESUMEN

The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Because mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity, and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK, and phospho-CREB are higher in rapid eye movement (REM) sleep compared with awake mice but are not elevated in non-REM sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity, and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , AMP Cíclico/fisiología , Memoria/fisiología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Sueño REM/fisiología , Adenilil Ciclasas/genética , Adenilil Ciclasas/fisiología , Animales , Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Electroencefalografía/métodos , Electroencefalografía/psicología , Electromiografía/métodos , Electromiografía/psicología , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Transducción de Señal/fisiología , Sueño REM/genética
10.
J Neurosci ; 31(29): 10640-7, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21775607

RESUMEN

Consolidation of hippocampus-dependent memory is dependent on activation of the cAMP/Erk/MAPK (mitogen-activated protein kinase) signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN 2 d after training for contextual fear memory reduced contextual memory measured 2 weeks after training, indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus.


Asunto(s)
Adenilil Ciclasas/metabolismo , Ritmo Circadiano/fisiología , Hipocampo/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Núcleo Supraquiasmático/fisiología , Análisis de Varianza , Animales , Calcio/fisiología , AMP Cíclico/metabolismo , Electrólisis/métodos , Conducta Exploratoria , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Reconocimiento en Psicología , Percepción Espacial/fisiología , Núcleo Supraquiasmático/lesiones , Factores de Tiempo , Tritio/metabolismo
11.
J Neurosci ; 31(15): 5557-61, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490195

RESUMEN

Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.


Asunto(s)
Adenilil Ciclasas/fisiología , Cilios/fisiología , AMP Cíclico/fisiología , Extinción Psicológica/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Transducción de Señal/fisiología , Adenilil Ciclasas/genética , Animales , Reacción de Prevención/fisiología , Miedo/fisiología , Hipocampo/citología , Hipocampo/fisiología , Inmunohistoquímica , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reconocimiento en Psicología/fisiología
12.
PLoS One ; 4(9): e6979, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19750222

RESUMEN

BACKGROUND: A recent study of obesity in Swedish men found that polymorphisms in the type 3 adenylyl cyclase (AC3) are associated with obesity, suggesting the interesting possibility that AC3 may play a role in weight control. Therefore, we examined the weight of AC3 mice over an extended period of time. METHODOLOGY/PRINCIPAL FINDINGS: We discovered that AC3(-/-) mice become obese as they age. Adult male AC3(-/-) mice are about 40% heavier than wild type male mice while female AC3(-/-) are 70% heavier. The additional weight of AC3(-/-) mice is due to increased fat mass and larger adipocytes. Before the onset of obesity, young AC3(-/-) mice exhibit reduced physical activity, increased food consumption, and leptin insensitivity. Surprisingly, the obesity of AC3(-/-) mice is not due to a loss of AC3 from white adipose and a decrease in lipolysis. CONCLUSIONS/SIGNIFICANCE: We conclude that mice lacking AC3 exhibit obesity that is apparently caused by low locomotor activity, hyperphagia, and leptin insensitivity. The presence of AC3 in primary cilia of neurons of the hypothalamus suggests that cAMP signals generated by AC3 in the hypothalamus may play a critical role in regulation of body weight.


Asunto(s)
Adenilil Ciclasas/genética , Adenilil Ciclasas/fisiología , Obesidad/genética , Adipocitos/citología , Tejido Adiposo/metabolismo , Animales , Peso Corporal , AMP Cíclico/metabolismo , Femenino , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Polimorfismo Genético , Factores Sexuales
13.
Nat Neurosci ; 11(9): 1074-82, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19160506

RESUMEN

The mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate (cAMP) signal transduction pathways have critical roles in the consolidation of hippocampus-dependent memory. We found that extracellular regulated kinase 1/2 MAPK phosphorylation and cAMP underwent a circadian oscillation in the hippocampus that was paralleled by changes in Ras activity and the phosphorylation of MAPK kinase and cAMP response element-binding protein (CREB). The nadir of this activation cycle corresponded with severe deficits in hippocampus-dependent fear conditioning under both light-dark and free-running conditions. Circadian oscillations in cAMP and MAPK activity were absent in memory-deficient transgenic mice that lacked Ca2+ -stimulated adenylyl cyclases. Furthermore, physiological and pharmacological interference with oscillations in MAPK phosphorylation after the cellular memory consolidation period impaired the persistence of hippocampus-dependent memory. These data suggest that the persistence of long-term memories may depend on reactivation of the cAMP/MAPK/CREB transcriptional pathway in the hippocampus during the circadian cycle.


Asunto(s)
Ritmo Circadiano/fisiología , AMP Cíclico/metabolismo , Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , Memoria/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Adenilil Ciclasas/metabolismo , Análisis de Varianza , Animales , Aprendizaje por Asociación/efectos de los fármacos , Aprendizaje por Asociación/fisiología , Butadienos/farmacología , Proteína de Unión a CREB/metabolismo , Calcio/administración & dosificación , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , AMP Cíclico/deficiencia , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Miedo , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/anatomía & histología , Hipocampo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/deficiencia , Actividad Motora/fisiología , Nitrilos/farmacología , Transducción de Señal/fisiología , Estadísticas no Paramétricas , Factores de Tiempo
14.
Cell ; 128(6): 1219-29, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17382888

RESUMEN

Because activation of ERK1/2 MAP kinase (MAPK) is critical for hippocampus-dependent memory, there is considerable interest in mechanisms for regulation of MAPK during memory formation. Here we report that MAPK and CREB-mediated transcription are negatively regulated by SCOP (suprachiasmatic nucleus [SCN] circadian oscillatory protein) and that SCOP is proteolyzed by calpain when hippocampal neurons are stimulated by brain-derived neurotrophic factor (BDNF), KCl depolarization, or NMDA. Moreover, training for novel object memory decreases SCOP in the hippocampus. To determine if hippocampus-dependent memory is influenced by SCOP in vivo, we generated a transgenic mouse strain for the inducible overexpression of SCOP in the forebrain. Overexpression of SCOP completely blocked memory for novel objects. We conclude that degradation of SCOP by calpain contributes to activation of MAPK during memory formation.


Asunto(s)
Calpaína/metabolismo , Hipocampo/metabolismo , Memoria , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a CREB/metabolismo , Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Técnicas de Cultivo de Célula , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/citología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , N-Metilaspartato/farmacología , Neuronas/metabolismo , Cloruro de Potasio/farmacología , Ratas , Elementos Reguladores de la Transcripción , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA