Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(4): e26384, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420492

RESUMEN

Root-knot nematode Meloidogyne graminicola is one of the most destructive plant parasites in upland as well as direct seeded rice. As an integral part of nematode biology, host finding behavior involves perceiving and responding to different chemical cues originating from the rhizosphere. A sustainable management tactic may include retardation of nematode chemoreception that would impair them to detect and discriminate the host stimuli. Deciphering the molecular basis of nematode chemoreception is vital to identify chokepoints for chemical or genetic interventions. However, compared to the well-characterized chemoreception mechanism in model nematode Caenorhabditis elegans, plant nematode chemoreception is yet underexplored. Herein, the full-length cDNA sequences of two chemotaxis-related genes (Mg-odr-1 and Mg-odr-3) were cloned from M. graminicola. Both the genes were markedly upregulated in the early developmental stages of M. graminicola suggesting their involvement in host finding processes. RNAi-induced independent knockdown of Mg-odr-1 and Mg-odr-3 caused behavioral aberration in second-stage juveniles of M. graminicola which in turn perturbed the nematodes' host finding ability and parasitic success inside rice roots. Additionally, nematodes' chemotactic response to different host root exudates, volatile and nonvolatile compounds was affected. Our results demonstrating the role of specific chemosensory genes in modulating M. graminicola host seeking behavior can enrich the existing knowledge of plant nematode chemoreception mechanism, and these genes can be targeted for novel nematicide development or in planta RNAi screens.

2.
Plant Physiol Biochem ; 207: 108388, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38295528

RESUMEN

Grass pea has the potential to become a miracle crop if the stigma attached to it as a toxic plant is ignored. In light of the following, we conducted transcriptome analyses on the high and low ODAP-containing cultivars i.e., Nirmal and Bidhan respectively in both normal and salt stress conditions. In this study, genes that work upstream and downstream to ß-ODAP have been found. Among these genes, AAO3 and ACL5 were related to ABA and polyamine biosynthesis, showing the relevance of ABA and polyamines in boosting the ß-ODAP content in Nirmal. Elevated ß-ODAP levels in salt stress-treated Bidhan may have evolved tolerance by positively regulating the expression of genes involved in phenylpropanoid and jasmonic acid biosynthesis. Although the concentration of ß-ODAP in Bidhan increased under salt stress, it was lower than in stress-treated Nirmal. Despite this, the expression of stress-related genes that work downstream to ß-ODAP was found higher in stress-treated Bidhan. This could be because stress-treated Nirmal has lower GSH, proline, and higher H2O2, resulting in the development of severe oxidative stress. Overall, our research not only identified new genes linked with ß-ODAP, but also revealed the molecular mechanism by which a low ß-ODAP-containing cultivar developed tolerance against salinity stress.


Asunto(s)
Aminoácidos Diaminos , Lathyrus , Lathyrus/genética , Lathyrus/metabolismo , Neurotoxinas/análisis , Neurotoxinas/metabolismo , Aminoácidos Diaminos/análisis , Aminoácidos Diaminos/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Salino/genética
3.
BMC Genomics ; 24(1): 745, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057766

RESUMEN

BACKGROUND: Root-knot nematode Meloidogyne graminicola has emerged as a major threat in rice agroecosystems owing to climate change-induced changes in cultivation practices. Synthetic nematicides are continually being withdrawn from the nematode management toolbox because of their ill effects on the environment. A sustainable strategy would be to develop novel nematicides or resistant plants that would target nematode sensory perception, which is a key step in the host finding biology of plant-parasitic nematodes (PPNs). However, compared to the extensive literature on the free-living nematode Caenorhabditis elegans, negligible research has been performed on PPN chemosensory biology. RESULTS: The present study characterizes the five chemosensory genes (Mg-odr-7, Mg-tax-4, Mg-tax-4.1, Mg-osm-9, and Mg-ocr-2) from M. graminicola that are putatively associated with nematode host-finding biology. All the genes were highly transcribed in the early life stages, and RNA interference (RNAi)-induced downregulation of each candidate gene perturbed the normal behavioural phenotypes of M. graminicola, as determined by examining the tracking pattern of juveniles on Pluronic gel medium, attraction to and penetration in rice root tip, and developmental progression in rice root. In addition, a detrimental effect on nematode chemotaxis towards different volatile and nonvolatile organic compounds and host root exudates was documented. CONCLUSION: Our findings enrich the existing literature on PPN chemosensory biology and can supplement future research aimed at identifying a comprehensive chemosensory signal transduction pathway in PPNs.


Asunto(s)
Oryza , Tylenchoidea , Animales , Tylenchoidea/genética , Caenorhabditis elegans , Interferencia de ARN , Oryza/genética , Raíces de Plantas
4.
Planta ; 258(6): 103, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874380

RESUMEN

MAIN CONCLUSION: As an important biotic stressor, plant-parasitic nematodes afflict global crop productivity. Deployment of CRISPR/Cas9 system that selectively knock out host susceptibility genes conferred improved nematode tolerance in crop plants. As an important biotic stressor, plant-parasitic nematodes cause a considerable yield decline in crop plants that eventually contributes to a negative impact on global food security. Being obligate plant parasites, the root-knot and cyst nematodes maintain an intricate and sophisticated relationship with their host plants by hijacking the host's physiological and metabolic pathways for their own benefit. Significant progress has been made toward developing RNAi-based transgenic crops that confer nematode resistance. However, the strategy of host-induced gene silencing that targets nematode effectors is likely to fail because the induced silencing of effectors (which interact with plant R genes) may lead to the development of nematode phenotypes that break resistance. Lately, the CRISPR/Cas9-based genome editing system has been deployed to achieve host resistance against bacteria, fungi, and viruses. In these studies, host susceptibility (S) genes were knocked out to achieve resistance via loss of susceptibility. As the S genes are recessively inherited in plants, induced mutations of the S genes are likely to be long-lasting and confer broad-spectrum resistance. A number of S genes contributing to plant susceptibility to nematodes have been identified in Arabidopsis thaliana, rice, tomato, cucumber, and soybean. A few of these S genes were targeted for CRISPR/Cas9-based knockout experiments to improve nematode tolerance in crop plants. Nevertheless, the CRISPR/Cas9 system was mostly utilized to interrogate the molecular basis of plant-nematode interactions rather than direct research toward achieving tolerance in crop plants. The current standalone article summarizes the progress made so far on CRISPR/Cas9 research in plant-nematode interactions.


Asunto(s)
Sistemas CRISPR-Cas , Nematodos , Animales , Sistemas CRISPR-Cas/genética , Edición Génica , Silenciador del Gen , Productos Agrícolas/genética
5.
BMC Plant Biol ; 23(1): 390, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37563544

RESUMEN

BACKGROUND: Plant-parasitic root-knot nematodes cause immense yield declines in crop plants that ultimately obviate global food security. They maintain an intimate relationship with their host plants and hijack the host metabolic machinery to their own advantage. The existing resistance breeding strategies utilizing RNAi and resistance (R) genes might not be particularly effective. Alternatively, knocking out the susceptibility (S) genes in crop plants appears to be a feasible approach, as the induced mutations in S genes are likely to be long-lasting and may confer broad-spectrum resistance. This could be facilitated by the use of CRISPR/Cas9-based genome editing technology that precisely edits the gene of interest using customizable guide RNAs (gRNAs) and Cas9 endonuclease. RESULTS: Initially, we characterized the nematode-responsive S gene HIPP27 from Arabidopsis thaliana by generating HIPP27 overexpression lines, which were inoculated with Meloidogyne incognita. Next, two gRNAs (corresponding to the HIPP27 gene) were artificially synthesized using laboratory protocols, sequentially cloned into a Cas9 editor plasmid, mobilized into Agrobacterium tumefaciens strain GV3101, and transformed into Arabidopsis plants using the floral dip method. Apart from 1-3 bp deletions and 1 bp insertions adjacent to the PAM site, a long deletion of approximately 161 bp was documented in the T0 generation. Phenotypic analysis of homozygous, 'transgene-free' T2 plants revealed reduced nematode infection compared to wild-type plants. Additionally, no growth impairment was observed in gene-edited plants. CONCLUSION: Our results suggest that the loss of function of HIPP27 in A. thaliana by CRISPR/Cas9-induced mutagenesis can improve host resistance to M. incognita.


Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Edición Génica/métodos , Arabidopsis/genética , Arabidopsis/parasitología , Sistemas CRISPR-Cas , Fitomejoramiento , Plantas Modificadas Genéticamente/genética
7.
Front Plant Sci ; 14: 1143889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089646

RESUMEN

Pest profiles in today's global food production system are continually affected by climate change and extreme weather. Under varying climatic conditions, plant-parasitic nematodes (PPNs) cause substantial economic damage to a wide variety of agricultural and horticultural commodities. In parallel, their herbivory also accredit to diverse ecosystem services such as nutrient cycling, allocation and turnover of plant biomass, shaping of vegetation community, and alteration of rhizospheric microorganism consortium by modifying the root exudation pattern. Thus PPNs, together with the vast majority of free-living nematodes, act as ecological drivers. Because of direct exposure to the open environment, PPN biology and physiology are largely governed by environmental factors including temperature, precipitation, humidity, atmospheric and soil carbon dioxide level, and weather extremes. The negative effects of climate change such as global warming, elevated CO2, altered precipitation and the weather extremes including heat waves, droughts, floods, wildfires and storms greatly influence the biogeographic range, distribution, abundance, survival, fitness, reproduction, and parasitic potential of the PPNs. Changes in these biological and ecological parameters associated to the PPNs exert huge impact on agriculture. Yet, depending on how adaptable the species are according to their geo-spatial distribution, the consequences of climate change include both positive and negative effects on the PPN communities. While assorting the effects of climate change as a whole, it can be estimated that the changing environmental factors, on one hand, will aggravate the PPN damage by aiding to abundance, distribution, reproduction, generation, plant growth and reduced plant defense, but the phenomena like sex reversal, entering cryptobiosis, and reduced survival should act in counter direction. This seemingly creates a contraposition effect, where assessing any confluent trend is difficult. However, as the climate change effects will differ according to space and time it is apprehensible that the PPNs will react and adapt according to their location and species specificity. Nevertheless, the bio-ecological shifts in the PPNs will necessitate tweaking their management practices from the agri-horticultural perspective. In this regard, we must aim for a 'climate-smart' package that will take care of the food production, pest prevention and environment protection. Integrated nematode management involving precise monitoring and modeling-based studies of population dynamics in relation to climatic fluctuations with escalated reliance on biocontrol, host resistance, and other safer approaches like crop rotation, crop scheduling, cover cropping, biofumigation, use of farmyard manure (FYM) would surely prove to be viable options. Although the novel nematicidal molecules are target-specific and relatively less harmful to the environment, their application should not be promoted following the global aim to reduce pesticide usage in future agriculture. Thus, having a reliable risk assessment with scenario planning, the adaptive management strategies must be designed to cope with the impending situation and satisfy the farmers' need.

8.
Front Cell Infect Microbiol ; 13: 1296293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173791

RESUMEN

Plant-parasitic nematodes are important economic pests of a range of tropical crops. Strategies for managing these pests have relied on a range of approaches, including crop rotation, the utilization of genetic resistance, cultural techniques, and since the 1950's the use of nematicides. Although nematicides have been hugely successful in controlling nematodes, their toxicity to humans, domestic animals, beneficial organisms, and the environment has raised concerns regarding their use. Alternatives are therefore being sought. The Pasteuria group of bacteria that form endospores has generated much interest among companies wanting to develop microbial biocontrol products. A major challenge in developing these bacteria as biocontrol agents is their host-specificity; one population of the bacterium can attach to and infect one population of plant-parasitic nematode but not another of the same species. Here we will review the mechanism by which infection is initiated with the adhesion of endospores to the nematode cuticle. To understand the genetics of the molecular processes between Pasteuria endospores and the nematode cuticle, the review focuses on the nature of the bacterial adhesins and how they interact with the nematode cuticle receptors by exploiting new insights gained from studies of bacterial infections of Carnorhabditis elegans. A new Velcro-like multiple adhesin model is proposed in which the cuticle surface coat, which has an important role in endospore adhesion, is a complex extracellular matrix containing glycans originating in seam cells. The genes associated with these seam cells appear to have a dual role by retaining some characteristics of stem cells.


Asunto(s)
Parásitos , Pasteuria , Tylenchoidea , Animales , Humanos , Caenorhabditis elegans , Pasteuria/genética , Tylenchoidea/genética , Tylenchoidea/microbiología , Bacterias , Esporas Bacterianas/genética , Adhesinas Bacterianas
9.
BMC Genomics ; 23(1): 601, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982422

RESUMEN

BACKGROUND: Due to the prolonged usage of Bt-based biopesticides and Bt-transgenic crops worldwide, insects are continually developing resistance against Cry toxins. This resistance may occur if any mechanistic step in the insecticidal process is disrupted possibly because of the alteration in Cry-receptor binding affinity due to mutation in receptor genes. Compared to other lepidopteran insects, Cry receptor-related research has made asymmetric progress in the model insect Galleria mellonella. RESULTS: Present study describes the molecular characterization and functional analysis of five Cry toxin receptor-related genes (prohibitin, GLTP, α-amylase, ADAM and UDP-GT) and a gut repair gene (arylphorin) from the gut tissues of G. mellonella. Protein-protein docking analysis revealed that Cry1AcF putatively binds with all the five candidate proteins, suggesting their receptor-like function. These receptor-like genes were significantly overexpressed in the gut tissues of fourth-instar G. mellonella larvae upon early exposure to a sub-lethal dose of Cry1AcF toxin. However, targeted knockdown (by using bacterially-expressed dsRNAs) of these genes led to variable effect on insect susceptibility to Cry1AcF toxin. Insects pre-treated with prohibitin and α-amylase dsRNA exhibited significant reduction in Cry1AcF-induced mortality, suggesting their probable role as Cry receptor. By contrast, insects pre-treated with GLTP, ADAM and UDP-GT dsRNA exhibited no significant decline in mortality. This maybe explained by the possibility of RNAi feedback regulation (as few of the receptors belong to multigene family) or redundant role of GLTP, ADAM and UDP-GT in Cry intoxication process. CONCLUSION: Since the laboratory culture of G. mellonella develop Bt resistance quite rapidly, findings of the current investigation may provide some useful information for future Cry receptor-related research in the model insect.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Proteínas Bacterianas/genética , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Larva/genética , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Prohibitinas , Interferencia de ARN , Uridina Difosfato/metabolismo , Uridina Difosfato/farmacología , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , alfa-Amilasas/farmacología
10.
Insect Mol Biol ; 31(4): 434-446, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35266587

RESUMEN

Crystal (Cry) toxins produced from the soil bacterium, Bacillus thuringiensis (Bt), have gained worldwide attention for long due to their insecticidal potential. A number of receptor proteins located on the epithelial cells of the larval midgut were shown to be crucial for Cry intoxication in different insect pests belonging to order Lepidoptera, Diptera and Coleoptera. A beehive pest, Galleria mellonella, serves as an excellent insect model for biochemical research. However, information on the Cry receptor-like genes in G. mellonella is limited. In the present study, the full-length sequences of four putative Cry receptor genes (ABC transporter, alkaline phosphatase, aminopeptidase N and cadherin) were cloned from G. mellonella. All these receptor genes were substantially upregulated in the midgut tissue of fourth-instar G. mellonella larvae upon early exposure (6 h) to a sub-lethal dose of Cry1AcF toxin. Oral and independent delivery of bacterially-expressed dsRNAs corresponding to four receptor genes in G. mellonella suppressed the transcription of target receptors which in turn significantly reduced the larval sensitivity to Cry1AcF toxin. As the laboratory populations of G. mellonella develop Bt resistance in a relatively short time, molecular characterization of Cry receptor genes in G. mellonella performed in the present study may provide some useful information for future research related to the genetic basis of Bt resistance in the model insect.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Proteínas Bacterianas/química , Endotoxinas/metabolismo , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Larva/genética , Larva/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Receptores de Superficie Celular
11.
Virulence ; 12(1): 2957-2971, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34882066

RESUMEN

Photorhabdus bacteria secrete a repertoire of protein toxins that can kill the host insect. Among them, toxin complex (Tc) proteins have gained significant attention due to their wider conservation across the different bacterial genera. In our laboratory, a C-terminal domain of TcaB protein was characterized from P. akhurstii bacterium that conferred the potent oral insecticidal effect on Galleria mellonella. However, the role of insect gut receptors in the TcaB intoxication process was yet to be investigated. In the current study, we examined the transcription of candidate midgut receptors in TcaB-infected larvae and subsequently cloned a cadherin-like gene, GmCAD, from G. mellonella. GmCAD was highly transcribed in the fourth-instar larval stage and specifically in the midgut tissues. Our ligand blot and binding ELISA assays indicated that TcaB binds to the truncated peptides from the GmCAD transmembrane-proximal region with greater affinity than that from the transmembrane-distal region. Oral administration of bacterially expressed GmCAD dsRNA in G. mellonella severely attenuated the expression of target mRNA, which in turn alleviated the negative effect of TcaB on insect survival (TcaB-induced mortality in CAD dsRNA pretreated larvae reduced by 72-83% compared to control), implying the association of GmCAD in the TcaB intoxication process. Present findings form a basis of future research related to the insect gut receptor interactions with Photorhabdus toxins.


Asunto(s)
Mariposas Nocturnas , Photorhabdus , Animales , Insectos , Larva/microbiología , Mariposas Nocturnas/microbiología , Photorhabdus/genética
12.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-34414375

RESUMEN

Meloidogyne incognita is an obligate plant-parasitic nematode causing serious damage to agricultural crops. Major constraints in nematode management arose due to the limited availability of non-fumigant nematicides in conjunction with the considerable ill effects of fumigants on human and non-target organisms. Recently, fluensulfone has been reported to be an effective non-fumigant nematicide against plant-parasitic nematodes and the model nematode Caenorhabditis elegans. The nematicidal efficacy varies according to its concentration at the time of application, exposure timing, nematode species variability, and even across subpopulations within the same species. It interferes with the key physiological processes of nematodes, like motility, behavior, chemosensation, stylet thrusting, infectivity, metabolism, lipid consumption, tissue integrity, oviposition, egg hatching, and survival. However, the molecular basis of these multivariate physiological anomalies is still largely unknown. Quantitative real-time PCR was carried out to understand the acute transcriptional perturbation of 30 functional genes associated with key physiological and life processes in a M. incognita population, following exposure of 10, 50, and 100 ppm of fluensulfone for 5 and 10 hr. The chemical treatment resulted in significant downregulation of all the neuropeptidergic genes, with concomitant repression of majority of genes related to chemosensation, esophageal gland secretion, parasitism, fatty acid metabolism, and G-protein coupled receptors. Collectively, the parasitism genes were found to be perturbed at highest magnitude, followed by the GPCRs and neuropeptidergic genes. These results establish the wide ranging effect of fluensulfone on various metabolic and physiological pathways of nematode.

13.
Front Plant Sci ; 11: 894, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765539

RESUMEN

Rice (Oryza sativa L.) is one of the major staple food crops of the world. The productivity of rice is considerably affected by the root-knot nematode, Meloidogyne graminicola. Modern nematode management strategies targeting the physiological processes have established the potency of use of neuromotor genes for their management. Here, we explored the utility of two FMRFamide like peptide coding genes, Mg-flp-1 and Mg-flp-12 of M. graminicola for its management through host-induced gene silencing (HIGS) using Agrobacterium-mediated transformation of rice. The presence and integration of hairpin RNA (hpRNA) constructs in transgenic lines were confirmed by PCR, qRT-PCR, and Southern and Northern hybridization. Transgenic plants were evaluated against M. graminicola, where phenotypic effect of HIGS was pronounced with reduction in galling by 20-48% in the transgenic plants. This also led to significant decrease in total number of endoparasites by 31-50% for Mg-flp-1 and 34-51% for Mg-flp-12 transgenics. Likewise, number of egg masses per plant and eggs per egg mass also declined significantly in the transgenics, ultimately affecting the multiplication factor, when compared to the wild type plants. This study establishes the effectiveness of the two M. graminicola flp genes for its management and also for gene pyramiding.

14.
3 Biotech ; 10(8): 360, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32832322

RESUMEN

Plant-parasitic root-knot nematode Meloidogyne incognita uses an array of effector proteins to establish successful plant infections. Mi-msp-1 and Mi-msp-20 are two known effectors secreted from nematode subventral oesophageal glands; Mi-msp-1 being a putative secretory venom allergen AG5-like protein, whereas Mi-msp-20 is a pioneer gene with a coiled-coil motif. Expression of specific effector is known to cause disturbances in the expression of other effectors. Here, we used RNA-Seq to investigate the pleiotropic effects of silencing Mi-msp-1 and Mi-msp-20. A total of 25.1-51.9 million HQ reads generated from Mi-msp-1 and Mi-msp-20 silenced second-stage juveniles (J2s) along with freshly hatched J2s were mapped to an already annotated M. incognita proteome to understand the impact on various nematode pathways. As compared to control, silencing of Mi-msp-1 caused differential expression of 29 transcripts, while Mi-msp-20 silencing resulted in differential expression of a broader set of 409 transcripts. In the Mi-msp-1 silenced J2s, cytoplasm (GO:0005737) was the most enriched gene ontology (GO) term, whereas in the Mi-msp-20 silenced worms, embryo development (GO:0009792), reproduction (GO:0000003) and nematode larval development (GO:0002119) were the most enriched terms. Limited crosstalk was observed between these two effectors as a sheer 5.9% of the up-regulated transcripts were common between Mi-msp-1 and Mi-msp-20 silenced nematodes. Our results suggest that in addition to the direct knock-down caused by silencing of Mi-msp-1 and Mi-msp-20, the cascading effect on other genes might also be contributing to a reduction in nematode's parasitic abilities.

15.
3 Biotech ; 10(2): 60, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32030329

RESUMEN

In the present study, 36 Asian rice cultivars/landraces were evaluated against M. graminicola under in vitro conditions using soilless Pluronic gel medium. The cultivars/genotypes Phule Radha, EK 70, LK 248 and Khalibagh showed significantly reduced nematode infection, endoparasitic development, and derived multiplication factor indicating the presence of resistance, while Halvi Sal 17 was found to be most susceptible. Performance of selected genotypes showing resistance/susceptibility under in vitro conditions was further confirmed in soil which also revealed Phule Radha to be highly resistant and Halvi Sal 17 as the most susceptible genotype. Further, expression profile of plant defense responsive genes related to MAPK pathway, phytohormones, PR-proteins and callose and lignin synthesis were quantified in Phule Radha (the most resistant) and Halvi Sal 17 (the most susceptible) at 2 and 6 days post nematode inoculation. Significant upregulated expression of several defensive genes was observed in the resistant cultivar Phule Radha in contrast to insignificant expression in the susceptible varieties. The resistant genotype identified in the present study will be highly promising for resistance breeding in rice against M. graminicola.

16.
J Nematol ; 522020.
Artículo en Inglés | MEDLINE | ID: mdl-33829167

RESUMEN

Root-knot nematodes (Meloidogyne spp.) infect a large number of crops including guava. We investigated a population of Meloidogyne sp. infecting guava in the Coimbatore region of Tamil Nadu, India for identification and species confirmation. Detailed morphological and morphometric observations based on second-stage juveniles, males, females, and perineal patterns showed resemblance of the isolated population with the original and subsequent descriptions of M. enterolobii. Isozyme analysis of the young egg-laying females displayed the characteristic esterase phenotype pattern similar to that of M. enterolobii. Additionally, the identity of the nematode population was further validated by M. enterolobii specific SCAR marker and ITS rDNA. Recently published reports on the occurrence and morphological descriptions of M. enterolobii from India are largely incongruent with the original and subsequent redescriptions of the species. Here, we present the most comprehensive morphology and morphometrics of an Indian population of M. enterolobii for its authentic identification.

17.
Int J Parasitol ; 49(13-14): 1061-1073, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31733196

RESUMEN

Meloidogyne incognita is a polyphagous plant-parasitic nematode that causes considerable yield loss in agricultural and horticultural crops. The management options available for M. incognita are extremely limited. Here we identified and characterised a M. incognita homolog of Caenorhabditis elegans sterol-binding protein (Mi-SBP-1), a transcriptional regulator of several lipogenesis pathway genes, and used RNA interference-mediated gene silencing to establish its utility as a target for the management of M. incognita. Mi-sbp-1 is predicted to be a helix-loop-helix domain containing DNA binding transcription factor, and is present in the M. incognita genome in three copies. The RNA-Seq analysis of Mi-sbp-1 silenced second stage juveniles confirmed the key role of this gene in lipogenesis regulation in M. incognita. In vitro and host-induced gene silencing of Mi-sbp-1 in M. incognita second stage juveniles resulted in loss of nematodes' ability to utilise the stored fat reserves, slower nematode development, and reduced parasitism on adzuki bean and tobacco plants. The multiplication factor for the Mi-sbp-1 silenced nematodes on adzuki bean plants was reduced by 51% compared with the control nematodes in which Mi-sbp-1 was not silenced. Transgenic expression of the double-stranded RNA construct of the Mi-sbp-1 gene in tobacco plants caused 40-45% reduction in M. incognita multiplication, 30-43.8% reduction in the number of egg masses, and 33-54% reduction in the number of eggs per egg mass compared with the wild type control plants. Our results confirm that Mi-sbp-1 is a key regulator of lipogenesis in M. incognita and suggest that it can be used as an effective target for its management. The findings of this study can be extended to develop methods to manage other economically important parasitic nematodes.


Asunto(s)
Lipogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tylenchoidea/enzimología , Tylenchoidea/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Silenciador del Gen , Enfermedades de las Plantas/parasitología , Nicotiana/parasitología , Resultado del Tratamiento , Tylenchoidea/crecimiento & desarrollo , Vigna/parasitología
18.
Pestic Biochem Physiol ; 157: 219-229, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31153472

RESUMEN

Photorhabdus akhurstii can produce a variety of proteins that aid this bacterium and its mutualistic nematode vector, Heterorhabditis indica to kill the insect host. Herein, we characterized (by heterologously expressing in E. coli) an open reading frame (1713 bp) of the toxin complex protein, TcaB from P. akhurstii strains IARI-SGHR2 and IARI-SGMS1 and assessed its toxic effect on G. mellonella larvae. The intra-hemocoel injection of purified TcaB (molecular weight-63 kDa) caused fourth instar larval bodies to blacken and die with LD50 values of 67.25 (IARI-SGHR2) and 52.08 (IARI-SGMS1) ng per larva at 12 h. Additionally, oral administration of the toxin caused larval mortality with LD50 values of 709.55 (IARI-SGHR2) and 598.44 (IARI-SGMS1) ng per g diet per larva at 7 days post feeding. Injection of purified TcaB caused loss of viability of fourth instar G. mellonella hemocytes at 6 h post incubation; cells displayed morphological changes typical of apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and disintegration. Injection of TcaB also elevated the phenoloxidase activity in insect hemolymph which triggers an extensive immune response that potentially leads to larval death. Similar to other bacterial toxins TcaB possesses potent biological activity which may enable it to be used as an efficient agent for pest management.


Asunto(s)
Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Insecticidas/metabolismo , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Photorhabdus/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Hemocitos/efectos de los fármacos , Photorhabdus/genética
19.
J Nematol ; 50(3): 387-398, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30451422

RESUMEN

Neem is a perennial plant of family Meliaceae grown very commonly in India. During a survey in Rajasthan, India; a population of root-knot nematode was found in association with tender neem plants causing yellowing, stunting, and heavy root galling. Inspection of the perineal pattern morphology of the adult females, extracted from the galled roots, primarily led to identification of the species as Meloidogyne indica . Further, detailed morphological and morphometric illustrations of second-stage juveniles, males and females were carried out by light compound and scanning electron microscopy. Gross morphology and measurements were found consistent with the original description of M. indica infecting citrus by Whitehead (1968). The neem population was found to infect and reproduce on citrus. Additionally, evolutionary relationship was deduced by Maximum likelihood method using ITS rRNA, D2D3 expansion segment of 28S rRNA and mitochondrial COI sequences. Phylogenetic analyses based on these sequences showed sufficient divergence of M. indica to be differentiated as a unique species under the genus Meloidogyne .

20.
J Nematol ; 50(2): 91-98, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30451430

RESUMEN

Pasteuria penetrans is a Gram-positive, endospore forming soil bacterium, infecting root-knot nematodes, Meloidogyne spp. Being obligate in nature, the bacterium is not easily grown in vitro, and the in vivo culturing technique is relied on the soil-based microcosm since long. Hence, culturing of P. penetrans using CYG germination pouches as a soil-less medium for plant growth, promises to provide a contamination free environment along with ease in isolation of infected females from the plant roots. Additionally, this method increases the percentage of P. penetrans infected nematode females as compared with the soil-based system. Schematic observation of all the life stages of P. penetrans was documented, which revealed chronological fragmentation of vegetative microcolony inside the nematode body demonstrating the formation of some stages not reported earlier. Further, germination of endospores attached to infective juveniles was found to be most likely asynchronous as single female nematode contained most of the developing stages of P. penetrans concurrently. Additionally, the effect of an antibiotic, streptomycin sulfate was evaluated for effects on the growth and development of the bacterium at different concentrations. Higher doses of antibiotic were found to exert a negative impact on the development of P. penetrans , which shows the incompatibility of Pasteuria and streptomycin sulfate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...