Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819845

RESUMEN

Competition between spin-orbit interaction and electron correlations can stabilize a variety of non-trivial electronic and magnetic ground states. Using density functional theory calculations, here we show that different exotic electronic and magnetic ground states can be obtained by electron filling of the B-site cation in the Na2BO3 family of compounds (B = Ta, Ir, Pt and Tl). Electron filling leads to a Peierls insulator state with a direct band gap to j = 1/2 spin-orbit assisted Mott-insulator to band insulator and then to negative charge-transfer half-metal transition. The magnetic ground state also undergoes a transition from a non-magnetic state to a zigzag antiferromagnetic state, a re-entrant non-magnetic state and finally to a ferromagnetic state. The electron localization function shows a ladder type dimerization or Peierls instability in Na2TaO3. Maximally localized Wannier function calculations reveal delocalization of electrons through the eg orbitals, which form a π bond, and localization of electrons through the t2g orbitals, which form a σ bond, between the neighbouring tantalum ions. Na2TlO3 shows Stoner or band ferromagnetism due to the localized moments with up-spin on oxygen ligands created by the negative charge-transfer character, interacting via the down-spin itinerant electrons of the Tl 5d-O 2p hybridized band. These findings are significant for practical applications; for instance the direct band gap insulator Na2TaO3 shows potential for utilisation in solar cells, while Na2TlO3, which exhibits ferromagnetic half metallicity, holds promise for spintronic device applications.

2.
ACS Appl Mater Interfaces ; 15(14): 18391-18401, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010892

RESUMEN

Magnetoelastic and magnetoelectric coupling in the artificial multiferroic heterostructures facilitate valuable features for device applications such as magnetic field sensors and electric-write magnetic-read memory devices. In ferromagnetic/ferroelectric heterostructures, the intertwined physical properties can be manipulated by an external perturbation, such as an electric field, temperature, or a magnetic field. Here, we demonstrate the remote-controlled tunability of these effects under visible, coherent, and polarized light. The combined surface and bulk magnetic study of domain-correlated Ni/BaTiO3 heterostructures reveals that the system shows strong sensitivity to the light illumination via the combined effect of piezoelectricity, ferroelectric polarization, spin imbalance, magnetostriction, and magnetoelectric coupling. A well-defined ferroelastic domain structure is fully transferred from a ferroelectric substrate to the magnetostrictive layer via interface strain transfer. The visible light illumination is used to manipulate the original ferromagnetic microstructure by the light-induced domain wall motion in ferroelectric substrates and consequently the domain wall motion in the ferromagnetic layer. Our findings mimic the attractive remote-controlled ferroelectric random-access memory write and magnetic random-access memory read application scenarios, hence facilitating a perspective for room temperature spintronic device applications.

3.
Phys Chem Chem Phys ; 24(25): 15271-15279, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35726647

RESUMEN

In this work, we develop a photocatalyst wherein nitrogen and phosphorus co-doped carbon quantum dots are scaffolded onto TiO2 nanoparticles (NPCQD/TiO2), denoted as NPCT hereafter. The developed NPCT photocatalyst exhibits an enhanced visible light photocatalytic hydrogen production of 533 µmol h-1 g-1 compared to nitrogen doped CQD/TiO2 (478 µmol h-1 g-1), phosphorus doped CQD/TiO2 (451 µmol h-1 g-1) and pure CQD/TiO2 (427 µmol h-1 g-1) photocatalysts. The enhanced photocatalytic activity of the NPCT photocatalyst is attributed to the excellent synergy between NPCQDs and TiO2 nanoparticles, which results in the creation of virtual energy levels, a decrease in work function and suppressed recombination rates, thereby increasing the lifetime of photogenerated electrons. A detailed mechanism is proposed for the enhancement in visible light hydrogen production by the NPCT photocatalyst from the experimental results, Mott-Schottky plots and ultraviolet photoelectron spectroscopy results. Further, first-principles density functional theory (DFT) simulations are carried out which predict the decrease in the work function and band gap, and the increase in the density of states of NPCT as the factors responsible for the observed enhancement in visible light photocatalytic hydrogen production.

4.
Nano Lett ; 21(19): 8433-8438, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34586820

RESUMEN

BaBiO3(BBO) is known to be a valence-skipping perovskite, which avoids the metallic state through charge disproportionation (CD), the mechanism of which is still unresolved. A novel mechanism for CD is presented here in the covalent limit using a molecular orbital (MO) picture under two scenarios: (case i) Bi 6sp-O 2p and (case ii) Bi 6p-O 2p hybridizations that favor 5+ and 3+ states, respectively. The proposed model is further validated by using a combinatorial approach of X-ray spectroscopic experiments and first-principle calculations. The bulk X-ray photoemission spectrum reveals that, at room temperature, the CD is dynamic in nature, whereas, at 200 K, it approaches a quasi-static limit. Under compressive strain, the octahedral breathing mode is damped and drives the system to a quasi-static limit even at room temperature, giving rise to asymmetric CD.


Asunto(s)
Análisis Espectral
5.
RSC Adv ; 10(45): 26613-26630, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35515801

RESUMEN

Graphene-nanostructured systems, such as graphene quantum dots (GQDs), are well known for their interesting light-emitting characteristics and are being applied to a variety of luminescence-based applications. The emission properties of GQDs are complex. Therefore, understanding the science of the photophysics of coupled quantum systems (like quantum clusters) is still challenging. In this regard, we have successfully prepared two different types of GQD clusters, and explored their photophysical properties in detail. By co-relating the structure and photophysics, it was possible to understand the emission behavior of the cluster in detail. This gave new insight into understanding the clustering effect on the emission behaviour. The results clearly indicated that although GQDs are well connected, the local discontinuity in the structure prohibits the dynamics of photoexcited charge carriers going from one domain to another. Therefore, an excitation-sensitive dual emission was possible. Emission yield values of about 18% each were recorded at the blue and green emission wavelengths at a particular excitation energy. This meant that the choice of emission color was decided by the excitation energy. Through systematic analysis, it was found that both intrinsic and extrinsic effects contributed to the blue emission, whereas only the intrinsic effect contributed to the green emission. These excitation-sensitive dual emissive GQD clusters were then used to sense Fe3+ and Cr6+ ions in the nanomolar range. While the Cr6+ ions were able to quench both blue and green emissions, the Fe3+ ions quenched blue emission only. The insensitivity of the Fe3+ ions in the quenching of the green emission was also understood through quantum chemical calculations.

6.
RSC Adv ; 10(39): 23446-23456, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35520327

RESUMEN

We synthesized mesoporous cobalt titanate (CTO) microrods via the sol-gel method as an outstanding working electrode for the supercapacitor. The mesoporous CTO microrods were amassed in hexagonal shapes of an average width of ∼670 nm, and were composed of nanoparticles of average diameter ∼41 nm. The well crystalline CTO microrods of the hexagonal phase to the R3̄ space group possessed an average pore size distribution of 3.92 nm throughout the microrod. The mesoporous CTO microrods with increased textural boundaries played a vital role in the diffusion of ions, and they provided a specific capacitance of 608.4 F g-1 and a specific power of 4835.7 W kg-1 and a specific energy of 9.77 W h kg-1 in an aqueous 2 M KOH electrolyte, which was remarkably better than those of Ti, La, Cr, Fe, Ni, and Sr-based perovskites or their mixed heterostructures supplemented by metal oxides as an impurity. Furthermore, the diffusion-controlled access to the OH- ions (0.27 µs) deep inside the microrod conveyed high stability, a long life cycle for up to 1950 continuous charging-discharging cycles, and excellent capacitance retention of 82.3%. Overall, the mesoporous CTO shows its potential as an electrode for a long-cycle supercapacitor, and provides opportunities for additional enhancement after developing the core-shell hetero-architecture with other metal oxide materials such as MnO2, and TiO2.

7.
ACS Omega ; 3(5): 5853-5864, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458783

RESUMEN

Size confinement for tailoring of electronic structures can in principle be explored for enhancement of photocatalytic properties. In the present work, vanadium-doped bismuth oxide nanoparticles, with an average particle size of 36 nm, are synthesized for the first time, using the thermal plasma method, in large scale with high yield to explore for photocatalytic applications. The electronic and crystallographic structures of the sample are studied experimentally and theoretically. Systematic investigations of the electronic structure of the fluorite type cubic phase of Bi11VO19 nanoparticles are reported for the first time. Enhancement is observed in the photocatalytic activity as compared to other delta phases of bismuth vanadate. The valence band is found to comprise mainly of O 2p states, whereas the conduction band arises from V 3d states giving rise to a band gap value of 2.26 eV. Absence of excess O in δ-Bi2O3 results in shrinking of the band gap because of O 2p, Bi 6s and 6p states from the surrounding atoms at doping sites. Bi11VO19 nanoparticles show an efficient visible light absorption and exhibit excellent photodegradation properties of methylene blue solution under visible light irradiation.

8.
RSC Adv ; 8(38): 21664-21670, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35539914

RESUMEN

We observed enhanced field emission (FE) behavior for spitzer shaped ZnO nanowires synthesized via a hydrothermal approach. The spitzer shaped and pointed tipped 1D ZnO nanowires of average diameter 120 nm and length ∼5-6 µm were randomly grown over an ITO coated glass substrate. The turn-on field (E on) of 1.56 V µm-1 required to draw a current density of 10 µA cm-2 from these spitzer shaped ZnO nanowires is significantly lower than that of pristine and doped ZnO nanostructures, and MoS2@TiO2 heterostructure based FE devices. The orthodoxy test that was performed confirms the feasibility of a field enhancement factor (ß FE) of 3924 for ZnO/ITO emitters. The enhancement in FE behavior can be attributed to the spitzer shaped nanotips, sharply pointed nanotips and individual dispersion of the ZnO nanowires. The ZnO/ITO emitters exhibited very stable electron emission with average current fluctuations of ±5%. Our investigations suggest that the spitzer shaped ZnO nanowires have potential for further improving in electron emission and other functionalities after forming tunable nano-hetero-architectures with metal or conducting materials.

9.
Sci Rep ; 7(1): 10850, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883449

RESUMEN

Graphene has been studied intensively in opto-electronics, and its transport properties are well established. However, efforts to induce intrinsic optical properties are still in progress. Herein, we report the production of micron-sized sheets by interconnecting graphene quantum dots (GQDs), which are termed 'GQD solid sheets', with intrinsic absorption and emission properties. Since a GQD solid sheet is an interconnected QD system, it possesses the optical properties of GQDs. Metal atoms that interconnect the GQDs in the bottom-up hydrothermal growth process, induce the semiconducting behaviour in the GQD solid sheets. X-ray absorption measurements and quantum chemical calculations provide clear evidence for the metal-mediated growth process. The as-grown graphene quantum dot solids undergo a Forster Resonance Energy Transfer (FRET) interaction with GQDs to exhibit an unconventional 36% photoluminescence (PL) quantum yield in the blue region at 440 nm. A high-magnitude photocurrent was also induced in graphene quantum dot solid sheets by the energy transfer process.

10.
ACS Appl Mater Interfaces ; 7(32): 17671-81, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26226377

RESUMEN

We report on the synthesis of dense and faceted indium sulfide (ß-In2S3) nano-octahedron films on fluorine-doped tin oxide-coated glass by the hydrothermal method and their photoresponse properties in a flip chip device configuration. We have examined the temporal evolution of the phase constitution, morphology, and optoelectronic properties for films obtained after growth interruption at specific intervals. It is noted that, initially, an In(OH)3 film forms, which is gradually transformed to the ß-In2S3 phase over time. In the case of the film wherein most, but not all, of In(OH)3 is consumed, an exceptionally large photoresponse (light to dark current ratio) of ∼10(4) and response time(s) (rise/fall) of ∼88/280 ms are realized. This superior performance is attributed to nearly complete carrier compensation achievable in the system under high pressure growth leading to dramatic reduction of dark conductivity. It is argued that the temporally growth-controlled equilibrium between quasi-In interstitials and cation vacancies dictates the optoelectronic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...