Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 198: 115750, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043205

RESUMEN

A bottleneck in restoring self-sustaining beds of the European oyster (Ostrea edulis) is the successful development and settlement of larvae to bottom habitats. These processes are largely governed by temperature but a mechanistic understanding of larval performance across ecologically relevant temperatures is lacking. We reared larvae at low (20-21 °C) and high (20-24 °C) fluctuating temperatures and applied short-term exposures of larvae to temperatures between 16 and 33 °C to assess vital rates and thermal coping ranges. Larval thermal preference was between 25 and 30 °C for both rearing treatments which corresponded with optimum temperatures for oxygen consumption rates and locomotion. Larvae had 5.5-fold higher settling success, however, when reared at the high compared to the low fluctuating temperatures. Higher mean and periods of increased temperature, as projected in a future climate, may therefore enhance recruitment success of O. edulis in northern European habitats.


Asunto(s)
Ecosistema , Ostrea , Animales , Larva , Temperatura , Frío
2.
Harmful Algae ; 117: 102292, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35944956

RESUMEN

Phaeocystis is a globally widespread marine phytoplankton genus, best known for its colony-forming species that can form large blooms and odorous foam during bloom decline. In the North Sea, Phaeocystis globosa typically becomes abundant towards the end of the spring bloom, when nutrients are depleted and the share of mixotrophic protists increases. Although mixotrophy is widespread across the eukaryotic tree of life and is also found amongst haptophytes, a mixotrophic nutrition has not yet been demonstrated in Phaeocystis. Here, we sampled two consecutive Phaeocystis globosa spring blooms in the coastal North Sea. In both years, bacterial cells were observed inside 0.6 - 2% of P. globosa cells using double CARD-FISH hybridizations in combination with laser scanning confocal microscopy. Incubation experiments manipulating light and nutrient availability showed a trend towards higher occurrence of intracellular bacteria under P-deplete conditions. Based on counts of bacteria inside P. globosa cells in combination with theoretical values of prey digestion times, maximum ingestion rates of up to 0.08 bacteria cell-1 h-1 were estimated. In addition, a gene-based predictive model was applied to the transcriptome assemblies of seven Phaeocystis strains and 24 other haptophytes to assess their trophic mode. This model predicted a phago-mixotrophic feeding strategy in several (but not all) strains of P. globosa, P. antarctica and other haptophytes that were previously assumed to be autotrophic. The observation of bacterial cells inside P. globosa and the gene-based model predictions strongly suggest that the phago-mixotrophic feeding strategy is widespread among members of the Phaeocystis genus and other haptophytes, and might contribute to their remarkable success to form nuisance blooms under nutrient-limiting conditions.


Asunto(s)
Haptophyta , Bacterias , Fitoplancton , Estaciones del Año
3.
PLoS One ; 16(7): e0246012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34228730

RESUMEN

In depositional intertidal coastal systems, primary production is dominated by benthic microalgae (microphytobenthos) inhabiting the mudflats. This benthic productivity is supporting secondary production and supplying important services to humans including food provisioning. Increased frequencies of extreme events in weather (such as heatwaves, storm surges and cloudbursts) are expected to strongly impact the spatiotemporal dynamics of the microphytobenthos and subsequently their contribution to coastal food webs. Within north-western Europe, the years 2018 and 2019 were characterized by record-breaking summer temperatures and accompanying droughts. Field-calibrated satellite data (Sentinel 2) were used to quantify the seasonal dynamics of microphytobenthos biomass and production at an unprecedented spatial and temporal resolution during these years. We demonstrate that the Normalized Difference Vegetation Index (NDVI) should be used with caution in depositional coastal intertidal systems, because it may reflect import of remains of allochthonous pelagic productivity rather than local benthic biomass. We show that the reduction in summer biomass of the benthic microalgae cannot be explained by grazing but was most probably due to the high temperatures. The fivefold increase in salinity from January to September 2018, resulting from reduced river run-off during this exceptionally dry year, cannot have been without consequences for the vitality of the microphytobenthos community and its resistance to wind stress and cloud bursts. Comparison to historical information revealed that primary productivity of microphytobenthos may vary at least fivefold due to variations in environmental conditions. Therefore, ongoing changes in environmental conditions and especially extreme events because of climate change will not only lead to changes in spatiotemporal patterns of benthic primary production but also to changes in biodiversity of life under water and ecosystem services including food supply. Satellite MPB data allows for adequate choices in selecting coastal biodiversity conservation and coastal food supply.


Asunto(s)
Biomasa , Biodiversidad , Cambio Climático , Diatomeas , Cadena Alimentaria , Microalgas , Salinidad , Estaciones del Año , Temperatura
5.
Artículo en Inglés | MEDLINE | ID: mdl-33023195

RESUMEN

Whilst the demand for nutritious and sustainable seafood is increasing, fishing yields are declining due to overfishing and climate change. The inshore aquaculture of marine molluscs-e.g., the suspension-feeding cockle Cerastoderma edule for NW Europe-might be an alternative practice if cost-effective and nature-based technology enhances growth and survival. Our inshore experiments revealed that increasing the seawater residence time resulted in improved water quality. The reduction in sediment loads and stimulation of pelagic microalgal growth resulted in enhanced shell growth and meat content of the wild cockles seeded into the system. Shorter residence times resulted also in an increase in benthic microalgae, but the concurrent increase in silt content of the sediment appeared to hamper effective filtration by cockles. The growth conditions (with respect to the water and sediment quality) for the inshore cultivation of cockles can indeed be improved by means of ecological engineering, suggesting that the inshore aquaculture of marine shellfish can provide sustainable food and income for coastal communities, in particular when the shellfish farms are located in low-lying salinized coastal areas where common agriculture practices are no longer profitable. The involvement of the shellfishery industry was and will be crucial for studying and understanding the complex practice of cockle cultivation.


Asunto(s)
Acuicultura , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Ingeniería , Europa (Continente) , Alimentos Marinos , Mariscos
6.
PLoS One ; 14(6): e0217003, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31206548

RESUMEN

Estuarine food webs are generally considered to be supported by marine pelagic and benthic primary producers and by the import of dead organic matter from the open sea. Although estuaries receive considerable amounts of freshwater phytoplankton and organic compounds from adjacent rivers, the potential contribution of these living and dead matter to estuarine food webs is often assumed to be negligible and, therefore, not examined. Based on stable isotope analyses, we report the importance of freshwater suspended particulate organic matter (FW-SPOM) for fuelling estuarine food webs in comparison to estuarine SPOM and microphytobenthos. This previously neglected food source contributed 50-60% (annual average) of food intake of suspension-feeding bivalves such as cockles (Cerastoderma edule), mussels (Mytilus edulis) and Pacific oysters (Magallana gigas) at the Balgzand tidal flats, an estuarine site in the western Wadden Sea (12-32 psu). For these species, this proportion was particularly high in autumn during strong run-off of SPOM-rich freshwater, whilst estuarine SPOM (20%-25%) and microphytobenthos (15%-30%) were relatively important in summer when the freshwater run-off was very low. These findings have implications for our understanding of the trophic interactions within coastal food webs and for freshwater management of estuarine ecosystems.


Asunto(s)
Bivalvos , Dieta , Estaciones del Año , Animales , Cadena Alimentaria , Microalgas
7.
Parasitology ; 145(6): 814-821, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29183410

RESUMEN

Invasive parasites can spill over to new hosts in invaded ecosystems with often unpredictable trophic relationships in the newly arising parasite-host interactions. In European seas, the intestinal copepod Mytilicola orientalis was co-introduced with Pacific oysters (Magallana gigas) and spilled over to native blue mussels (Mytilus edulis), with negative impacts on the condition of infected mussels. However, whether the parasite feeds on host tissue and/or stomach contents is yet unknown. To answer this question, we performed a stable isotope analysis in which we included mussel host tissue and the primary food sources of the mussels, microphytobenthos (MPB) and particulate organic matter (POM). The copepods were slightly enriched in δ15N (mean Δ15N ± s.d.; 1·22 ± 0·58‰) and δ13C (Δ13C 0·25 ± 0·32‰) with respect to their host. Stable isotope mixing models using a range of trophic fractionation factors indicated that host tissue was the main food resource with consistent additional contributions of MPB and POM. These results suggest that the trophic relationship of the invasive copepod with its mussel host is parasitic as well as commensalistic. Stable isotope studies such as this one may be a useful tool to unravel trophic relationships in new parasite-host associations in the course of invasions.


Asunto(s)
Copépodos/fisiología , Interacciones Huésped-Parásitos , Mytilus edulis/fisiología , Simbiosis , Animales , Ecosistema , Conducta Alimentaria , Cadena Alimentaria , Marcaje Isotópico/métodos , Mytilus edulis/parasitología
8.
Proc Biol Sci ; 276(1669): 2871-80, 2009 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-19474038

RESUMEN

The species composition of plankton, insect and annual plant communities may vary markedly from year to year. Such interannual variability is usually thought to be driven by year-to-year variation in weather conditions. Here we examine an alternative explanation. We studied the effects of regular seasonal forcing on a multi-species predator-prey model consisting of phytoplankton and zooplankton species. The model predicts that interannual variability in species composition can easily arise without interannual variability in external conditions. Seasonal forcing increased the probability of chaos in our model communities, but squeezed these irregular species dynamics within the seasonal cycle. As a result, the population dynamics had a peculiar character. Consistent with long-term time series of natural plankton communities, seasonal variation led to a distinct seasonal succession of species, yet the species composition varied from year to year in an irregular fashion. Our results suggest that interannual variability in species composition is an intrinsic property of multi-species communities in seasonal environments.


Asunto(s)
Insectos , Modelos Biológicos , Dinámicas no Lineales , Plancton , Plantas , Estaciones del Año , Animales , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...