Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37503055

RESUMEN

Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In C. elegans , the Wnt/ß-catenin Asymmetry (WßA) pathway oversees many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WßA pathway is the transcriptional activator SYS-1/ß-catenin. SYS-1 is sequentially negatively regulated during ACD; first by centrosomal regulation and subsequent proteasomal degradation and second by asymmetric activity of the ß-catenin "destruction complex" in one of the two daughter cells, which decreases SYS-1 levels in the absence of WßA signaling. However, the extent to which mother cell SYS-1 influences cell fate decisions of the daughters is unknown. Here, we quantify inherited SYS-1 in the differentiating daughter cells and the role of SYS-1 inheritance in Wnt-directed ACD. Photobleaching experiments demonstrate the GFP::SYS-1 present in daughter cell nuclei is comprised of inherited and de novo translated SYS-1 pools. We used a photoconvertible DENDRA2::SYS-1, to directly observe the dynamics of inherited SYS-1. Photoconversion during mitosis reveals that SYS-1 clearance at the centrosome preferentially degrades older SYS-1, and this accumulation is regulated via dynein trafficking. Photoconversion of the EMS cell during Wnt-driven ACD shows daughter cell inheritance of mother cell SYS-1. Additionally, loss of centrosomal SYS-1 increased inherited SYS-1 and, surprisingly, loss of centrosomal SYS-1 also resulted in increased levels of de novo SYS-1 in both EMS daughter cells. Lastly, we show that daughter cell negative regulation of SYS-1 via the destruction complex member APR-1/APC is key to limit both the de novo and the inherited SYS-1 pools in both the E and the MS cells. We conclude that regulation of both inherited and newly translated SYS-1 via centrosomal processing in the mother cell and daughter cell regulation via Wnt signaling are critical to maintain sister SYS-1 asymmetry during ACD.

2.
Mol Biol Cell ; 33(5): ar42, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196020

RESUMEN

The Caenorhabditis elegans Wnt/ß-catenin asymmetry (WßA) pathway utilizes asymmetric regulation of SYS-1/ß-catenin and POP-1/TCF coactivators. WßA differentially regulates gene expression during cell fate decisions, specifically by asymmetric localization of determinants in mother cells to produce daughters biased toward their appropriate cell fate. Despite the induction of asymmetry, ß-catenin localizes symmetrically to mitotic centrosomes in both mammals and C. elegans. Owing to the mitosis-specific localization of SYS-1 to centrosomes and enrichment of SYS-1 at kinetochore microtubules when SYS-1 centrosomal loading is disrupted, we investigated active trafficking in SYS-1 centrosomal localization. Here, we demonstrate that trafficking by microtubule motor dynein is required to maintain SYS-1 centrosomal enrichment, by dynein RNA interference (RNAi)-mediated decreases in SYS-1 centrosomal enrichment and by temperature-sensitive allele of the dynein heavy chain. Conversely, we observe depletion of microtubules by nocodazole treatment or RNAi of dynein-proteasome adapter ECPS-1 exhibits increased centrosomal enrichment of SYS-1. Moreover, disruptions to SYS-1 or negative regulator microtubule trafficking are sufficient to significantly exacerbate SYS-1 dependent cell fate misspecifications. We propose a model whereby retrograde microtubule-mediated trafficking enables SYS-1 enrichment at centrosomes, enhancing its eventual proteasomal degradation. These studies support the link between centrosomal localization and enhancement of proteasomal degradation, particularly for proteins not generally considered "centrosomal."


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Centrosoma/metabolismo , Dineínas/metabolismo , Mamíferos/metabolismo , Microtúbulos/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismo
3.
J Mol Biol ; 433(21): 167215, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34450138

RESUMEN

Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.


Asunto(s)
Desarrollo Embrionario/genética , Gametogénesis/genética , Enfermedades Neurodegenerativas/genética , Agregado de Proteínas/genética , Agregación Patológica de Proteínas/genética , Procesamiento Proteico-Postraduccional , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Eucariotas/citología , Células Eucariotas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Memoria/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
5.
Mol Biol Cell ; 31(17): 1951-1961, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583737

RESUMEN

The Wnt/ß-catenin signaling pathway is central to metazoan development and routinely dysregulated in cancer. Wnt/ß-catenin signaling initiates transcriptional reprogramming upon stabilization of the transcription factor ß-catenin, which is otherwise posttranslationally processed by a destruction complex and degraded by the proteasome. Since various Wnt signaling components are enriched at centrosomes, we examined the functional contribution of centrosomes to Wnt signaling, ß-catenin regulation, and posttranslational modifications. In HEK293 cells depleted of centrosomes we find that ß-catenin synthesis and degradation rates are unaffected but that the normal accumulation of ß-catenin in response to Wnt signaling is attenuated. This is due to accumulation of a novel high-molecular-weight form of phosphorylated ß-catenin that is constitutively degraded in the absence of Wnt. Wnt signaling operates by inhibiting the destruction complex and thereby reducing destruction complex-phosphorylated ß-catenin, but high-molecular-weight ß-catenin is unexpectedly increased by Wnt signaling. Therefore these studies have identified a pool of ß-catenin effectively shielded from regulation by Wnt. We present a model whereby centrosomes prevent inappropriate ß-catenin modifications that antagonize normal stabilization by Wnt signals.


Asunto(s)
Centrosoma/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
6.
Mol Biol Cell ; 31(13): 1324-1345, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32320318

RESUMEN

Protein aggregation, once believed to be a harbinger and/or consequence of stress, age, and pathological conditions, is emerging as a novel concept in cellular regulation. Normal versus pathological aggregation may be distinguished by the capacity of cells to regulate the formation, modification, and dissolution of aggregates. We find that Caenorhabditis elegans aggregates are observed in large cells/blastomeres (oocytes, embryos) and in smaller, further differentiated cells (primordial germ cells), and their analysis using cell biological and genetic tools is straightforward. These observations are consistent with the hypothesis that aggregates are involved in normal development. Using cross-platform analysis in Saccharomyces cerevisiae, C. elegans, and Xenopus laevis, we present studies identifying a novel disaggregase family encoded by animal genomes and expressed embryonically. Our initial analysis of yeast Arb1/Abcf2 in disaggregation and animal ABCF proteins in embryogenesis is consistent with the possibility that members of the ABCF gene family may encode disaggregases needed for aggregate processing during the earliest stages of animal development.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Desarrollo Embrionario , Agregación Patológica de Proteínas , Transportadoras de Casetes de Unión a ATP/fisiología , Animales , Humanos
7.
Results Probl Cell Differ ; 61: 83-114, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28409301

RESUMEN

Asymmetric cell division is a common mode of cell differentiation during the invariant lineage of the nematode, C. elegans. Beginning at the four-cell stage, and continuing throughout embryogenesis and larval development, mother cells are polarized by Wnt ligands, causing an asymmetric inheritance of key members of a Wnt/ß-catenin signal transduction pathway termed the Wnt/ß-catenin asymmetry pathway. The resulting daughter cells are distinct at birth with one daughter cell activating Wnt target gene expression via ß-catenin activation of TCF, while the other daughter displays transcriptional repression of these target genes. Here, we seek to review the body of evidence underlying a unified model for Wnt-driven asymmetric cell division in C. elegans, identify global themes that occur during asymmetric cell division, as well as highlight tissue-specific variations. We also discuss outstanding questions that remain unanswered regarding this intriguing mode of asymmetric cell division.


Asunto(s)
División Celular Asimétrica/fisiología , Caenorhabditis elegans/fisiología , Vía de Señalización Wnt/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo
8.
Cell Cycle ; 15(16): 2124-2134, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27294844

RESUMEN

The centrosome is the major microtubule-organizing center in animal cells but is dispensable for proper microtubule spindle formation in many biological contexts and is thus thought to fulfill additional functions. Recent observations suggest that the centrosome acts as a scaffold for proteasomal degradation in the cell to regulate a variety of biological processes including cell fate acquisition, cell cycle control, stress response, and cell morphogenesis. Here, we review the body of studies indicating a role for the centrosome in promoting proteasomal degradation of ubiquitin-proteasome substrates and explore the functional relevance of this system in different biological contexts. We discuss a potential role for the centrosome in coordinating local degradation of proteasomal substrates, allowing cells to achieve stringent spatiotemporal control over various signaling processes.


Asunto(s)
Centrosoma/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo , Animales , Ciclo Celular , Humanos , Modelos Biológicos
9.
J Cell Sci ; 129(5): 983-93, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26795562

RESUMEN

The Wnt/ß-catenin signaling pathway is utilized across metazoans. However, the mechanism of signal transduction, especially dissociation of the ß-catenin destruction complex by Dishevelled proteins, remains controversial. Here, we describe the function of the Dishevelled paralogs DSH-2 and MIG-5 in the Wnt/ß-catenin asymmetry (WßA) pathway in Caenorhabditis elegans, where WßA drives asymmetric cell divisions throughout development. We find that DSH-2 and MIG-5 redundantly regulate cell fate in hypodermal seam cells. Similarly, both DSH-2 and MIG-5 are required for positive regulation of SYS-1 (a C. elegans ß-catenin), but MIG-5 has a stronger effect on the polarity of SYS-1 localization. We show that MIG-5 controls cortical APR-1 (the C. elegans APC) localization. DSH-2 and MIG-5 both regulate the localization of WRM-1 (another C. elegans ß-catenin), acting together as negative regulators of WRM-1 nuclear localization. Finally, we demonstrate that overexpression of DSH-2 or MIG-5 in seam cells leads to stabilization of SYS-1 in the anterior seam daughter, solidifying the Dishevelled proteins as positive regulators of SYS-1. Overall, we have further defined the role of Dishevelled in the WßA signaling pathway, and demonstrated that DSH-2 and MIG-5 regulate cell fate, ß-catenin nuclear levels and the polarity of ß-catenin regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/fisiología , Proteínas Dishevelled/fisiología , beta Catenina/metabolismo , Animales , División Celular Asimétrica , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular , Proteínas del Citoesqueleto/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
10.
Genetics ; 201(3): 1047-60, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26358719

RESUMEN

Asymmetric cell division is critical during development, as it influences processes such as cell fate specification and cell migration. We have characterized FRK-1, a homolog of the mammalian Fer nonreceptor tyrosine kinase, and found it to be required for differentiation and maintenance of epithelial cell types, including the stem cell-like seam cells of the hypodermis. A genomic knockout of frk-1, allele ok760, results in severely uncoordinated larvae that arrest at the L1 stage and have an excess number of lateral hypodermal cells that appear to have lost asymmetry in the stem cell-like divisions of the seam cell lineage. frk-1(ok760) mutants show that there are excess lateral hypodermal cells that are abnormally shaped and smaller in size compared to wild type, a defect that could be rescued only in a manner dependent on the kinase activity of FRK-1. Additionally, we observed a significant change in the expression of heterochronic regulators in frk-1(ok760) mutants. However, frk-1(ok760) mutants do not express late, nonseam hypodermal GFP markers, suggesting the seam cells do not precociously differentiate as adult-hyp7 cells. Finally, our data also demonstrate a clear role for FRK-1 in seam cell proliferation, as eliminating FRK-1 during the L3-L4 transition results in supernumerary seam cell nuclei that are dependent on asymmetric Wnt signaling. Specifically, we observe aberrant POP-1 and WRM-1 localization that is dependent on the presence of FRK-1 and APR-1. Overall, our data suggest a requirement for FRK-1 in maintaining the identity and proliferation of seam cells primarily through an interaction with the asymmetric Wnt pathway.


Asunto(s)
División Celular Asimétrica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Vía de Señalización Wnt , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Desarrollo Embrionario , Células Madre Embrionarias/citología , Técnicas de Inactivación de Genes
11.
Curr Biol ; 25(8): 1005-16, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25819561

RESUMEN

Caenorhabditis elegans embryos rapidly diversify cell fate using a modified Wnt/ß-catenin signaling strategy to carry out serial asymmetric cell divisions (ACDs). Wnt-dependent ACDs rely on nuclear asymmetry of the transcriptional coactivator SYS-1/ß-catenin between daughter cells to differentially activate Wnt-responsive target genes. Here, we investigate how dynamic localization of SYS-1 to mitotic centrosomes influences SYS-1 inheritance in daughter cells and cell-fate outcomes after ACD. Through yeast two-hybrid screening, we identify the centrosomal protein RSA-2 as a SYS-1 binding partner and show that localization of SYS-1 to mitotic centrosomes is dependent on RSA-2. Uncoupling SYS-1 from the centrosome by RSA-2 depletion increases SYS-1 inheritance after ACD and promotes Wnt-dependent cell fate. Photobleaching experiments reveal that centrosome-bound SYS-1 turns over rapidly. Interestingly, disruption of the proteasome leads to an increased accumulation of SYS-1 at the centrosome but disrupts its dynamic turnover. We conclude that centrosomal targeting of SYS-1 promotes its degradation during asymmetric cell division. We propose a model whereby centrosome-associated SYS-1 degradation couples negative regulation with cell-division timing to facilitate SYS-1 clearance from the mother cell at the time of asymmetric division. Based on our observations of centrosomal SYS-1 dynamics, we discuss the possibility that the centrosome may coordinate various cell-cycle-dependent processes by synchronizing mitosis and protein regulation.


Asunto(s)
División Celular Asimétrica/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Centrosoma/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , División Celular Asimétrica/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal/genética , Proteínas Wnt/metabolismo
12.
J Cell Sci ; 127(Pt 12): 2771-81, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24762815

RESUMEN

The APC tumor suppressor regulates diverse stem cell processes including gene regulation through Wnt-ß-catenin signaling and chromosome stability through microtubule interactions, but how the disparate functions of APC are controlled is not well understood. Acting as part of a Wnt-ß-catenin pathway that controls asymmetric cell division, Caenorhabditis elegans APC, APR-1, promotes asymmetric nuclear export of the ß-catenin WRM-1 by asymmetrically stabilizing microtubules. Wnt function also depends on a second ß-catenin, SYS-1, which binds to the C. elegans TCF POP-1 to activate gene expression. Here, we show that APR-1 regulates SYS-1 levels in asymmetric stem cell division, in addition to its known role in lowering nuclear levels of WRM-1. We demonstrate that SYS-1 is also negatively regulated by the C. elegans homolog of casein kinase 1α (CKIα), KIN-19. We show that KIN-19 restricts APR-1 localization, thereby regulating nuclear WRM-1. Finally, the polarity of APR-1 cortical localization is controlled by PRY-1 (C. elegans Axin), such that PRY-1 controls the polarity of both SYS-1 and WRM-1 asymmetries. We propose a model whereby Wnt signaling, through CKIα, regulates the function of two distinct pools of APC - one APC pool negatively regulates SYS-1, whereas the second pool stabilizes microtubules and promotes WRM-1 nuclear export.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/citología , Proteínas del Citoesqueleto/metabolismo , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , División Celular Asimétrica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/fisiología , Polaridad Celular , Proteínas del Citoesqueleto/genética , Microtúbulos/metabolismo , Transporte de Proteínas , Células Madre/fisiología , Factores de Transcripción/genética , Vía de Señalización Wnt
14.
Dev Biol ; 331(1): 14-25, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19376107

RESUMEN

The Caenorhabditis elegans distal tip cell (DTC) provides a niche for germline stem cells in both hermaphrodites and males. The hermaphrodite distal tip cell (hDTC) also provides "leader" function to control gonadal elongation and shape, while in males, leader function is allocated to the linker cell (LC). Therefore, the male distal tip cell (mDTC) serves as a niche but not as a leader. The C. elegans homolog of E/Daughterless, HLH-2, was previously implicated in hDTC specification. Here we report that HLH-2 is also critical for hDTC maintenance, hDTC niche function and hDTC expression of a lag-2/DSL ligand reporter. We also find that HLH-2 functions in males to direct linker cell specification and to promote both mDTC maintenance and the mDTC niche function. We conclude that HLH-2 functions in both sexes to promote leader cell specification and DTC niche function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Gónadas/crecimiento & desarrollo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Trastornos del Desarrollo Sexual/genética , Femenino , Genes Reguladores , Genes Reporteros , Marcadores Genéticos , Gónadas/metabolismo , Proteínas Fluorescentes Verdes/genética , Masculino , Mutación , Interferencia de ARN , ARN de Helminto/genética , Recombinación Genética
15.
Dev Cell ; 14(5): 751-61, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18477457

RESUMEN

C. elegans SYS-1 has key functional characteristics of a canonical beta-catenin, but no significant sequence similarity. Here, we report the SYS-1 crystal structure, both on its own and in a complex with POP-1, the C. elegans TCF homolog. The two structures possess signature features of canonical beta-catenin and the beta-catenin/TCF complex that could not be predicted by sequence. Most importantly, SYS-1 bears 12 armadillo repeats and the SYS-1/POP-1 interface is anchored by a conserved salt-bridge, the "charged button." We also modeled structures for three other C. elegans beta-catenins to predict the molecular basis of their distinct binding properties. Finally, we generated a phylogenetic tree, using the region of highest structural similarity between SYS-1 and beta-catenin, and found that SYS-1 clusters robustly within the beta-catenin clade. We conclude that the SYS-1 protein belongs to the beta-catenin family and suggest that additional divergent beta-catenins await discovery.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , beta Catenina/química
16.
Proc Natl Acad Sci U S A ; 104(9): 3231-6, 2007 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-17296929

RESUMEN

beta-Catenins are conserved regulators of metazoan development that function with TCF DNA-binding proteins to activate transcription. In Caenorhabditis elegans, SYS-1/beta-catenin and POP-1/TCF regulate several asymmetric divisions, including that of the somatic gonadal precursor cell (SGP). In the distal but not the proximal SGP daughter, SYS-1/beta-catenin and POP-1/TCF transcriptionally activate ceh-22 to specify the distal fate. Here, we investigate the distribution of SYS-1/beta-catenin and its regulation. Using a rescuing transgene, VNS::SYS-1, which fuses VENUS fluorescent protein to SYS-1, we find more VNS::SYS-1 in distal than proximal SGP daughters, a phenomenon we call "SYS-1 asymmetry." In addition, SYS-1 asymmetry is seen in many other tissues, consistent with the idea that SYS-1 regulates asymmetric divisions broadly during C. elegans development. In particular, SYS-1 is more abundant in E than MS, and SYS-1 is critical for the endodermal fate. In all cases, SYS-1 is reciprocal to POP-1 asymmetry: cells with higher SYS-1 have lower POP-1, and vice versa. SYS-1 asymmetry is controlled posttranslationally and relies on frizzled and dishevelled homologs, which also control POP-1 asymmetry. Therefore, upstream regulators modulate the SYS-1 to POP-1 ratio by increasing SYS-1 and decreasing POP-1 within the same cell. By contrast, SYS-1 asymmetry does not rely on WRM-1, which appears specialized for POP-1 asymmetry. We suggest a two-pronged pathway for control of SYS-1:POP-1, which can robustly accomplish differential gene expression in daughters of an asymmetric cell division.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans/metabolismo , Gónadas/citología , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Células Madre/metabolismo , Transgenes/genética
17.
Dev Biol ; 294(2): 376-90, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16631154

RESUMEN

The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.


Asunto(s)
Estructuras Embrionarias/fisiología , Proteínas de Homeodominio/metabolismo , Cresta Neural/embriología , Neuronas/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proliferación Celular , Supervivencia Celular , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Estructuras Embrionarias/anatomía & histología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Hibridación in Situ , Cresta Neural/citología , Neuronas/citología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Fenotipo , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
18.
Development ; 131(4): 923-31, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14757644

RESUMEN

Induction of the otic placode, which gives rise to all tissues comprising the inner ear, is a fundamental aspect of vertebrate development. A number of studies indicate that fibroblast growth factor (Fgf), especially Fgf3, is necessary and sufficient for otic induction. However, an alternative model proposes that Fgf must cooperate with Wnt8 to induce otic differentiation. Using a genetic approach in zebrafish, we tested the roles of Fgf3, Fgf8 and Wnt8. We demonstrate that localized misexpression of either Fgf3 or Fgf8 is sufficient to induce ectopic otic placodes and vesicles, even in embryos lacking Wnt8. Wnt8 is expressed in the hindbrain around the time of otic induction, but loss of Wnt8 merely delays expression of preotic markers and otic vesicles form eventually. The delay in otic induction correlates closely with delayed expression of fgf3 and fgf8 in the hindbrain. Localized misexpression of Wnt8 is insufficient to induce ectopic otic tissue. By contrast, global misexpression of Wnt8 causes development of supernumerary placodes/vesicles, but this reflects posteriorization of the neural plate and consequent expansion of the hindbrain expression domains of Fgf3 and Fgf8. Embryos that misexpress Wnt8 globally but are depleted for Fgf3 and Fgf8 produce no otic tissue. Finally, cells in the preotic ectoderm express Fgf (but not Wnt) reporter genes. Thus, preotic cells respond directly to Fgf but not Wnt8. We propose that Wnt8 serves to regulate timely expression of Fgf3 and Fgf8 in the hindbrain, and that Fgf from the hindbrain then acts directly on preplacodal cells to induce otic differentiation.


Asunto(s)
Oído/embriología , Inducción Embrionaria/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas de Pez Cebra , Animales , Proteínas del Citoesqueleto , Genes Reporteros , Proteínas/fisiología , Rombencéfalo/embriología , Proteínas Wnt , Pez Cebra/embriología
19.
Dev Biol ; 261(2): 289-312, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-14499642

RESUMEN

The vertebrate inner ear is a marvel of structural and functional complexity, which is all the more remarkable because it develops from such a simple structure, the otic placode. Analysis of inner ear development has long been a fascination of experimental embryologists, who sought to understand cellular mechanisms of otic placode induction. More recently, however, molecular and genetic approaches have made the inner ear a useful model system for studying a much broader range of basic developmental mechanisms, including cell fate specification and differentiation, axial patterning, epithelial morphogenesis, cytoskeletal dynamics, stem cell biology, neurobiology, physiology, etc. Of course, there has also been tremendous progress in understanding the functions and processes peculiar to the inner ear. The goal of this review is to recount how historical approaches have shaped our understanding of the signaling interactions controlling early otic development; to discuss how new findings have led to fundamental new insights; and to point out new problems that need to be resolved in future research.


Asunto(s)
Oído Interno/embriología , Inducción Embrionaria/fisiología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Embrión de Pollo , Proteínas de Unión al ADN/metabolismo , Epitelio/embriología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Factores de Transcripción/metabolismo
20.
Development ; 129(22): 5279-87, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12399318

RESUMEN

The valentino (val) mutation in zebrafish perturbs hindbrain patterning and, as a secondary consequence, also alters development of the inner ear. We have examined the relationship between these defects and expression of fgf3 and fgf8 in the hindbrain. The otic vesicle in val/val mutants is smaller than normal, yet produces nearly twice the normal number of hair cells, and some hair cells are produced ectopically between the anterior and posterior maculae. Anterior markers pax5 and nkx5.1 are expressed in expanded domains that include the entire otic epithelium juxtaposed to the hindbrain, and the posterior marker zp23 is not expressed. In the mutant hindbrain, expression of fgf8 is normal, whereas the domain of fgf3 expression expands to include rhombomere 4 through rhombomere X (an aberrant segment that forms in lieu of rhombomeres 5 and 6). Depletion of fgf3 by injection of antisense morpholino (fgf3-MO) suppresses the ear patterning defects in val/val embryos: Excess and ectopic hair cells are eliminated, expression of anterior otic markers is reduced or ablated, and zp23 is expressed throughout the medial wall of the otic vesicle. By contrast, disruption of fgf8 does not suppress the val/val phenotype but instead interacts additively, indicating that these genes affect distinct developmental pathways. Thus, the inner ear defects observed in val/val mutants appear to result from ectopic expression of fgf3 in the hindbrain. These data also indicate that val normally represses fgf3 expression in r5 and r6, an interpretation further supported by the effects of misexpressing val in wild-type embryos. This is in sharp contrast to the mouse, in which fgf3 is normally expressed in r5 and r6 because of positive regulation by kreisler, the mouse ortholog of val. Implications for co-evolution of the hindbrain and inner ear are discussed.


Asunto(s)
Oído Interno/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Rombencéfalo/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Oído Interno/anomalías , Embrión no Mamífero , Factor 3 de Crecimiento de Fibroblastos , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Cabello/anomalías , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción PAX5 , Proteínas Proto-Oncogénicas/genética , Rombencéfalo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA