Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Mol Cell Endocrinol ; 589: 112237, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599276

RESUMEN

The molecular basis of mullerian aplasia, also known as Mayer-Rokitansky-Kuster Hauser (MRKH) or congenital absence of the uterus and vagina, is largely unknown. We applied a multifaceted genetic approach to studying the pathogenesis of MRKH including exome sequencing of trios and duos, genome sequencing of families, qPCR, RT-PCR, and Sanger sequencing to detect intragenic deletions, insertions, splice variants, single nucleotide variants, and rearrangements in 132 persons with MRKH. We identified two heterozygous variants in ZNHIT3 localized to a commonly involved CNV region at chromosome 17q12 in two different families with MRKH. One is a frameshift, truncating variant that is predicted to interfere with steroid hormone binding of the LxxLL sequence of the C-terminal region. The second variant is a double missense/stopgain variant. Both variants impair protein expression in vitro. In addition, four more probands with MRKH harbored the stopgain variant without the nearby missense variant. In total, 6/132 (4.5%) of patients studied, including five with associated anomalies (type 2 MRKH), had ZNHIT3 variants that impair function in vitro. Our findings implicate ZNHIT3 as an important gene associated with MRKH within the 17q12 CNV region.

2.
Am J Hum Genet ; 111(4): 729-741, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579670

RESUMEN

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.


Asunto(s)
Epilepsia Generalizada , Glutamato-Amoníaco Ligasa , Glutamina , Animales , Humanos , Ratones , Encéfalo/metabolismo , Epilepsia Generalizada/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamatos/metabolismo , Glutamina/genética , Glutamina/metabolismo
3.
Am J Med Genet A ; : e63597, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511854

RESUMEN

The Undiagnosed Disease Network (UDN) is comprised of clinical and research experts collaborating to diagnose rare disease. The UDN is funded by the National Institutes of Health and includes 12 different clinical sites (About Us, 2022). Here we highlight the success of collaborative efforts within the UDN Clinical Site at Vanderbilt University Medical Center (VUMC) in utilizing a cohort of experts in bioinformatics, structural biology, and genetics specialists in diagnosing rare disease. Our UDN team identified a de novo mosaic CACNA1D variant c.2299T>C in a 5-year-old female with a history of global developmental delay, dystonia, dyskinesis, and seizures. Using a collaborative multidisciplinary approach, our VUMC UDN team diagnosed the participant with Primary Aldosteronism, Seizures, and Neurologic abnormalities (PASNA) OMIM: 615474 due to a rare mosaic CACNA1D variant (O'Neill, 2013). Interestingly, this patient was mosaic, a phenotypic trait previously unreported in PASNA cases. This report highlights the importance of a multidisciplinary approach in diagnosing rare disease.

4.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387458

RESUMEN

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lípidos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Unión al GTP rab/metabolismo
5.
Am J Med Genet A ; 194(5): e63527, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38229216

RESUMEN

Disease specific cohort studies have reported details on X linked (XL) disorders affecting females. We investigated the spectrum and penetrance of XL disorders seen in electronic health records (EHR). We generated a cohort of individuals diagnosed with XL disorders at Vanderbilt University Medical Center over 20 years. Our cohort included 477 males and 203 females diagnosed with 108 different XL genetic disorders. We found large differences between the female/male (F/M) ratios for various XL disorders regardless of their OMIM annotated mode of inheritance. We identified four XL recessive disorders affecting women previously only described in men. Biomarkers for XL disease had unique gender-specific patterns differing between modes of inheritance. EHRs provide large cohorts of XL genetic disorders that give new insights compared to the literature. Differences in the F/M ratios and biomarkers of XL disorders observed likely result from disease specific and sex dependent penetrance. We conclude that observed gender ratios associated with specific XL disorders may be more useful than those predicted by Mendelian genetics provided by OMIM. Our findings of a gender specific penetrance and severity for XL disorders show unexpected differences from Mendelian predictions. Further work is required to validate our findings in larger combined EHR cohorts.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Patrón de Herencia , Humanos , Masculino , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Penetrancia , Biomarcadores , Electrónica , Registros Electrónicos de Salud
6.
Am J Med Genet A ; 194(3): e63454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37897121

RESUMEN

A 26-year-old female proband with a clinical diagnosis and consistent phenotype of Diamond-Blackfan anemia (DBA, OMIM 105650) without an identified genotype was referred to the Undiagnosed Diseases Network. DBA is classically associated with monoallelic variants that have an autosomal-dominant or -recessive mode of inheritance. Intriguingly, her case was solved by a detection of a digenic interaction between non-allelic RPS19 and RPL27 variants. This was confirmed with a machine learning structural model, co-segregation analysis, and RNA sequencing. This is the first report of DBA caused by a digenic effect of two non-allelic variants demonstrated by machine learning structural model. This case suggests that atypical phenotypic presentations of DBA may be caused by digenic inheritance in some individuals. We also conclude that a machine learning structural model can be useful in detecting digenic models of possible interactions between products encoded by alleles of different genes inherited from non-affected carrier parents that can result in DBA with an unrealized 25% recurrence risk.


Asunto(s)
Anemia de Diamond-Blackfan , Humanos , Femenino , Adulto , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Proteínas Ribosómicas/genética , Genotipo , Alelos , Fenotipo , Secuencia de Bases , Mutación
7.
Nat Metab ; 5(10): 1685-1690, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37770764

RESUMEN

Despite available treatment options, many patients with phenylketonuria (PKU) cannot achieve target plasma phenylalanine (Phe) levels1. We previously modified Escherichia coli Nissle 1917 to metabolize Phe in the gut after oral administration (SYNB1618) and designed a second strain (SYNB1934) with enhanced activity of phenylalanine ammonia lyase2,3. In a 14-day open-label dose-escalation study (Synpheny-1, NCT04534842 ), we test a primary endpoint of change from baseline in labeled Phe (D5-Phe AUC0-24; D5-Phe area under the curve (AUC) over 24 hours after D5-Phe administration) in plasma after D5-Phe challenge in adult participants with screening Phe of greater than 600 µM. Secondary endpoints were the change from baseline in fasting plasma Phe and the incidence of treatment-emergent adverse events. A total of 20 participants (ten male and ten female) were enrolled and 15 completed the study treatment. Here, we show that both strains lower Phe levels in participants with PKU: D5-Phe AUC0-24 was reduced by 43% from baseline with SYNB1934 and by 34% from baseline with SYNB1618. SYNB1934 led to a decrease in fasting plasma Phe of 40% (95% CI, -52, -24). There were no serious adverse events or infections. Four participants discontinued because of adverse events, and one withdrew during the baseline period. We show that synthetic biotics can metabolize Phe in the gut, lower post-prandial plasma Phe levels and lower fasting plasma Phe in patients with PKU.


Asunto(s)
Fenilalanina , Fenilcetonurias , Adulto , Humanos , Masculino , Femenino , Fenilalanina/uso terapéutico , Fenilcetonurias/tratamiento farmacológico , Fenilanina Amoníaco-Liasa/uso terapéutico , Administración Oral , Escherichia coli
8.
Am J Med Genet A ; 191(12): 2873-2877, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37622199

RESUMEN

A 72-year-old man was referred to the Undiagnosed Diseases Network (UDN) because of gradual progressive weakness in both lower extremities for the past 45 years. He was initially diagnosed as having Charcot-Marie-Tooth disease type 2 (CMT2) without a defined molecular genetic cause. Exome sequencing (ES) failed to detect deleterious neuromuscular variants. Very recently, biallelic variants in sorbitol dehydrogenase (SORD) were discovered to be a novel cause of inherited neuropathies including CMT2 or distal hereditary motor neuropathy (dHMN) referred to as Sorbitol Dehydrogenase Deficiency with Peripheral Neuropathy (SORDD, OMIM 618912). The most common variant identified was c.757delG; p.A253Qfs*27. Through the Vanderbilt UDN clinical site, this patient was formally diagnosed with SORDD after the identification of homozygosity for the above SORD frameshift through UDN Genome Sequencing (GS). His medical odyssey was solved by GS and detection of extremely high levels of sorbitol. The diagnosis provided him the opportunity to receive potential treatment with an investigational drug in a clinical trial for SORDD. We suggest that similar studies be considered in other individuals thought to possibly have CMT2 or dHMN.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Masculino , Anciano , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , L-Iditol 2-Deshidrogenasa/genética , Mutación
9.
Am J Med Genet A ; 191(10): 2482-2492, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37246601

RESUMEN

The contribution of mosaicism to diagnosed genetic disease and presumed de novo variants (DNV) is under investigated. We determined the contribution of mosaic genetic disease (MGD) and diagnosed parental mosaicism (PM) in parents of offspring with reported DNV (in the same variant) in the (1) Undiagnosed Diseases Network (UDN) (N = 1946) and (2) in 12,472 individuals electronic health records (EHR) who underwent genetic testing at an academic medical center. In the UDN, we found 4.51% of diagnosed probands had MGD, and 2.86% of parents of those with DNV exhibited PM. In the EHR, we found 6.03% and 2.99% and (of diagnosed probands) had MGD detected on chromosomal microarray and exome/genome sequencing, respectively. We found 2.34% (of those with a presumed pathogenic DNV) had a parent with PM for the variant. We detected mosaicism (regardless of pathogenicity) in 4.49% of genetic tests performed. We found a broad phenotypic spectrum of MGD with previously unknown phenotypic phenomena. MGD is highly heterogeneous and provides a significant contribution to genetic diseases. Further work is required to improve the diagnosis of MGD and investigate how PM contributes to DNV risk.


Asunto(s)
Variación Genética , Mosaicismo , Humanos , Pruebas Genéticas , Exoma , Padres
10.
Metabolites ; 13(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36984839

RESUMEN

We present a case study of a 20-year-old male with an unknown neurodegenerative disease who was referred to the Undiagnosed Diseases Network Vanderbilt Medical Center site. A previous metabolic panel showed that the patient had a critical deficiency in nicotinamide intermediates that are generated during the biosynthesis of NAD(H). We followed up on these findings by evaluating the patient's ability to metabolize nicotinamide. We performed a global metabolic profiling analysis of plasma samples that were collected: (1) under normal fed conditions (baseline), (2) after the patient had fasted, and (3) after he was challenged with a 500 mg nasogastric tube bolus of nicotinamide following the fast. Our findings showed that the patient's nicotinamide N-methyltransferase (NNMT), a key enzyme in NAD(H) biosynthesis and methionine metabolism, was not functional under normal fed or fasting conditions but was restored in response to the nicotinamide challenge. Altered levels of metabolites situated downstream of NNMT and in neighboring biochemical pathways provided further evidence of a baseline defect in NNMT activity. To date, this is the only report of a critical defect in NNMT activity manifesting in adulthood and leading to neurodegenerative disease. Altogether, this study serves as an important reference in the rare disease literature and also demonstrates the utility of metabolomics as a diagnostic tool for uncharacterized metabolic diseases.

11.
Hum Genet ; 142(4): 483-494, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36797380

RESUMEN

The molecular basis of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome remains largely unknown. Pathogenic variants in WNT4 and HNF1B have been confirmed in a small percent of individuals. A variety of copy number variants have been reported, but causal gene(s) remain to be identified. We hypothesized that rare structural variants (SVs) would be present in some individuals with MRKH, which could explain the genetic basis of the syndrome. Large molecular weight DNA was extracted from lymphoblastoid cells from 87 individuals with MRKH and available parents. Optical genome mapping (OGM) was performed to identify SVs, which were confirmed by another method (quantitative PCR, chromosomal microarray, karyotype, or fluorescent in situ hybridization) when possible. Thirty-four SVs that overlapped coding regions of genes with potential involvement in MRKH were identified, 14 of which were confirmed by a second method. These 14 SVs were present in 17/87 (19.5%) of probands with MRKH and included seven deletions, three duplications, one new translocation in 5/50 cells-t(7;14)(q32;q32), confirmation of a previously identified translocation-t(3;16)(p22.3;p13.3), and two aneuploidies. Of interest, three cases of mosaicism (3.4% of probands) were identified-25% mosaicism for trisomy 12, 45,X(75%)/46,XX (25%), and 10% mosaicism for a 7;14 translocation. Our study constitutes the first systematic investigation of SVs by OGM in individuals with MRKH. We propose that OGM is a promising method that enables a comprehensive investigation of a variety of SVs in a single assay including cryptic translocations and mosaic aneuploidies. These observations suggest that mosaicism could play a role in the genesis of MRKH.


Asunto(s)
Anomalías Congénitas , Mosaicismo , Humanos , Hibridación Fluorescente in Situ , Aneuploidia , Mapeo Cromosómico , Anomalías Congénitas/genética
12.
Am J Respir Crit Care Med ; 207(10): 1345-1357, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36622818

RESUMEN

Rationale and Objectives: Up to 20% of idiopathic interstitial lung disease is familial, referred to as familial pulmonary fibrosis (FPF). An integrated analysis of FPF genetic risk was performed by comprehensively evaluating for genetic rare variants (RVs) in a large cohort of FPF kindreds. Methods: Whole-exome sequencing and/or candidate gene sequencing from affected individuals in 569 FPF kindreds was performed, followed by cosegregation analysis in large kindreds, gene burden analysis, gene-based risk scoring, cell-type enrichment analysis, and coexpression network construction. Measurements and Main Results: It was found that 14.9-23.4% of genetic risk in kindreds could be explained by RVs in genes previously linked to FPF, predominantly telomere-related genes. New candidate genes were identified in a small number of families-including SYDE1, SERPINB8, GPR87, and NETO1-and tools were developed for evaluation and prioritization of RV-containing genes across kindreds. Several pathways were enriched for RV-containing genes in FPF, including focal adhesion and mitochondrial complex I assembly. By combining single-cell transcriptomics with prioritized candidate genes, expression of RV-containing genes was discovered to be enriched in smooth muscle cells, type II alveolar epithelial cells, and endothelial cells. Conclusions: In the most comprehensive FPF genetic study to date, the prevalence of RVs in known FPF-related genes was defined, and new candidate genes and pathways relevant to FPF were identified. However, new RV-containing genes shared across multiple kindreds were not identified, thereby suggesting that heterogeneous genetic variants involving a variety of genes and pathways mediate genetic risk in most FPF kindreds.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/genética , Células Endoteliales , Enfermedades Pulmonares Intersticiales/genética , Factores de Riesgo , Telómero , Predisposición Genética a la Enfermedad/genética , Receptores del Ácido Lisofosfatídico/genética
13.
Hum Mutat ; 43(12): 1816-1823, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36317458

RESUMEN

Advanced bioinformatics algorithms allow detection of multiple-exon copy-number variations (CNVs) from exome sequencing (ES) data, while detection of single-exon CNVs remains challenging. A retrospective review of Baylor Genetics' clinical ES patient cohort identified four individuals with homozygous single-exon deletions of TBCK (exon 23, NM_001163435.2), a gene associated with an autosomal recessive neurodevelopmental phenotype. To evaluate the prevalence of this deletion and its contribution to disease, we retrospectively analyzed single nucleotide polymorphism (SNP) array data for 8194 individuals undergoing ES, followed by PCR confirmation and RT-PCR on individuals carrying homozygous or heterozygous exon 23 TBCK deletions. A fifth individual was diagnosed with the TBCK-related disorder due to a heterozygous exon 23 deletion in trans with a c.1860+1G>A (NM_001163435.2) pathogenic variant, and three additional heterozygous carriers were identified. Affected individuals and carriers were from diverse ethnicities including European Caucasian, South Asian, Middle Eastern, Hispanic American and African American, with only one family reporting consanguinity. RT-PCR revealed two out-of-frame transcripts related to the exon 23 deletion. Our results highlight the importance of identifying single-exon deletions in clinical ES, especially for genes carrying recurrent deletions. For patients with early-onset hypotonia and psychomotor delay, this single-exon TBCK deletion might be under-recognized due to technical limitations of ES.


Asunto(s)
Hipotonía Muscular , Enfermedades Musculares , Proteínas Serina-Treonina Quinasas , Humanos , Variaciones en el Número de Copia de ADN , Exoma , Secuenciación del Exoma , Exones/genética , Hipotonía Muscular/genética , Enfermedades Musculares/genética , Proteínas Serina-Treonina Quinasas/genética , Estudios Retrospectivos , Lactante
15.
HGG Adv ; 3(4): 100131, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035247

RESUMEN

Whole-exome sequencing (WES) in the clinic has identified several rare monogenic developmental and epileptic encephalopathies (DEE) caused by ion channel variants. However, WES often fails to provide actionable insight for rare diseases, such as DEEs, due to the challenges of interpreting variants of unknown significance (VUS). Here, we describe a "personalized structural biology" (PSB) approach that leverages recent innovations in the analysis of protein 3D structures to address this challenge. We illustrate this approach in an Undiagnosed Diseases Network (UDN) individual with DEE symptoms and a de novo VUS in KCNC2 (p.V469L), the Kv3.2 voltage-gated potassium channel. A nearby KCNC2 variant (p.V471L) was recently suggested to cause DEE-like phenotypes. Computational structural modeling suggests that both affect protein function. However, despite their proximity, the p.V469L variant is likely to sterically block the channel pore, while the p.V471L variant is likely to stabilize the open state. Biochemical and electrophysiological analyses demonstrate heterogeneous loss-of-function and gain-of-function effects, as well as differential response to 4-aminopyridine treatment. Molecular dynamics simulations illustrate that the pore of the p.V469L variant is more constricted, increasing the energetic barrier for K+ permeation, whereas the p.V471L variant stabilizes the open conformation. Our results implicate variants in KCNC2 as causative for DEE and guide the interpretation of a UDN individual. They further delineate the molecular basis for the heterogeneous clinical phenotypes resulting from two proximal pathogenic variants. This demonstrates how the PSB approach can provide an analytical framework for individualized hypothesis-driven interpretation of protein-coding VUS.

16.
J Vasc Surg Venous Lymphat Disord ; 10(5): 1044-1050, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35691538

RESUMEN

OBJECTIVE: The aim of the present study was to report a large, single-center experience using the ClotTriever thrombectomy system (Inari Medical, Irvine, CA) for the management of acute iliofemoral (IF) deep vein thrombosis (DVT). One limitation of all endovascular devices for the treatment of acute IF-DVT has been the inability to completely remove all acute thrombus and the need for adjunctive thrombolysis with its attendant risk of bleeding complications. METHODS: A single-center retrospective review of consecutive patients with acute IF-DVT treated with the ClotTriever thrombectomy system (Inari Medical) is reported. Procedural efficacy was evaluated by an independent core imaging laboratory (Syntactx, New York, NY). Both procedural and in-hospital safety were assessed during the index hospitalization. The treated vein patency was assessed using duplex ultrasound at 30 days after the procedure. RESULTS: A total of 96 patients were included in the present retrospective review, 40 of whom (40%) had contraindications to thrombolytic therapy. In terms of efficacy, 93 patients (97%) had ≥75% thrombus removal. During the index hospitalization, two patients (2%) had experienced a symptomatic pulmonary embolus. However, no mortality, major bleeding, or device-related complications had occurred in the study population. Of the 96 patients, 64 had undergone duplex ultrasound at 30 days after the procedure. Of the 64 patients, 62 had normal flow (97%), 53 (83%) had normal compressibility, and 11 (17%) had partial compressibility. CONCLUSIONS: The ClotTriever thrombectomy catheter was both safe and effective in our cohort of patients with acute IF-DVT outside a randomized clinical trial.


Asunto(s)
Vena Ilíaca , Trombosis de la Vena , Catéteres , Vena Femoral/diagnóstico por imagen , Humanos , Vena Ilíaca/diagnóstico por imagen , Estudios Retrospectivos , Centros de Atención Terciaria , Trombectomía/métodos , Terapia Trombolítica/efectos adversos , Resultado del Tratamiento , Trombosis de la Vena/diagnóstico por imagen , Trombosis de la Vena/etiología , Trombosis de la Vena/terapia
17.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362483

RESUMEN

Rare genetic disorders, when considered together, are relatively common. Despite advancements in genetics and genomics technologies as well as increased understanding of genomic function and dysfunction, many genetic diseases continue to be difficult to diagnose. The goal of this Review is to increase the familiarity of genetic testing strategies for non-genetics providers. As genetic testing is increasingly used in primary care, many subspecialty clinics, and various inpatient settings, it is important that non-genetics providers have a fundamental understanding of the strengths and weaknesses of various genetic testing strategies as well as develop an ability to interpret genetic testing results. We provide background on commonly used genetic testing approaches, give examples of phenotypes in which the various genetic testing approaches are used, describe types of genetic and genomic variations, cover challenges in variant identification, provide examples in which next-generation sequencing (NGS) failed to uncover the variant responsible for a disease, and discuss opportunities for continued improvement in the application of NGS clinically. As genetic testing becomes increasingly a part of all areas of medicine, familiarity with genetic testing approaches and result interpretation is vital to decrease the burden of undiagnosed disease.


Asunto(s)
Enfermedades no Diagnosticadas , Pruebas Genéticas/métodos , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Fenotipo
18.
Am J Med Genet A ; 188(4): 1142-1148, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34967985

RESUMEN

We studied if clinicians could gain sufficient working knowledge of a computer-assisted diagnostic decision support system (DDSS) (SimulConsult), to make differential diagnoses (DDx) of genetic disorders. We hypothesized that virtual training could be convenient, asynchronous, and effective in teaching clinicians how to use a DDSS. We determined the efficacy of virtual, asynchronous teaching for clinicians to gain working knowledge to make computer-assisted DDx. Our study consisted of three surveys (Baseline, Training, and After Use) and a series of case problems sent to clinicians at Vanderbilt University Medical Center. All participants were able to generate computer-assisted DDx that achieved passing scores of the case problems. Between 75% and 92% agreed/completely agreed the DDSS was useful to their work and for clinical decision support and was easy to use. Participants' use of the DDSS resulted in statistically significant time savings in key tasks and in total time spent on clinical tasks. Our results indicate that virtual, asynchronous teaching can be an effective format to gain a working knowledge of a DDSS, and its clinical use could result in significant time savings across multiple tasks as well as facilitate synergistic interaction between clinicians and lab specialists. This approach is especially pertinent and offers value amid the COVID-19 pandemic.


Asunto(s)
Diagnóstico por Computador , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Enseñanza , Interfaz Usuario-Computador , Sistemas de Apoyo a Decisiones Clínicas , Diagnóstico por Computador/métodos , Educación Médica , Humanos , Médicos , Encuestas y Cuestionarios
19.
Nat Rev Endocrinol ; 18(3): 173-189, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34837063

RESUMEN

Achondroplasia, the most common skeletal dysplasia, is characterized by a variety of medical, functional and psychosocial challenges across the lifespan. The condition is caused by a common, recurring, gain-of-function mutation in FGFR3, the gene that encodes fibroblast growth factor receptor 3. This mutation leads to impaired endochondral ossification of the human skeleton. The clinical and radiographic hallmarks of achondroplasia make accurate diagnosis possible in most patients. However, marked variability exists in the clinical care pathways and protocols practised by clinicians who manage children and adults with this condition. A group of 55 international experts from 16 countries and 5 continents have developed consensus statements and recommendations that aim to capture the key challenges and optimal management of achondroplasia across each major life stage and sub-specialty area, using a modified Delphi process. The primary purpose of this first International Consensus Statement is to facilitate the improvement and standardization of care for children and adults with achondroplasia worldwide in order to optimize their clinical outcomes and quality of life.


Asunto(s)
Acondroplasia , Calidad de Vida , Acondroplasia/diagnóstico , Acondroplasia/genética , Acondroplasia/terapia , Consenso , Humanos , Mutación , Osteogénesis , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética
20.
Sci Rep ; 11(1): 24278, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930956

RESUMEN

Evidence from genetic disorders of CNP signalling suggests that plasma concentrations of CNP are subject to feedback regulation. In subjects with Achondroplasia (Ach), CNP intracellular activity is suppressed and plasma concentrations are raised but the therapeutic impact of exogenous CNP agonists on endogenous CNP is unknown. In this exploratory dose finding and extension study of 28 Ach children receiving Vosoritide over a 5 year period of treatment, endogenous CNP production was assessed using measurements of plasma aminoterminal proCNP (NTproCNP) adjusted for age and sex and normalised as standard deviation score (SDS), and then related to skeletal growth. Before treatment NTproCNP SDS was raised. Within the first 3 months of accelerating growth, levels were significantly reduced. Across the 5 years of sustained growth, levels varied widely and were markedly increased in some subjects during adolescence. Plasma NTproCNP was suppressed at 4 h post-injection in proportion to the prevailing level of hormone resistance as reflected by SDS before injection. We conclude CNP remains subject to regulation during growth promoting doses of Vosoritide. Fall in CNP during accelerating growth is consistent with an indirect feedback whereas the fall at 4 h is likely to be a direct effect from removal of intra cellular CNP resistance.


Asunto(s)
Acondroplasia/tratamiento farmacológico , Péptido Natriurético Tipo-C/análogos & derivados , Péptido Natriurético Tipo-C/metabolismo , Adolescente , Desarrollo Óseo/efectos de los fármacos , Huesos/efectos de los fármacos , Niño , Preescolar , Retroalimentación , Femenino , Trastornos del Crecimiento/tratamiento farmacológico , Humanos , Masculino , Péptido Natriurético Tipo-C/farmacología , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...