Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Sex Differ ; 15(1): 52, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898532

RESUMEN

BACKGROUND: Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A2 (TxA2) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown. To prevent the risk of cardiovascular disease by prenatal hypoxia, we have tested a maternal treatment using a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). We hypothesized that prenatal hypoxia enhances vascular TxA2 responses in the adult offspring, due to decreased NO modulation, and that this might be prevented by maternal nMitoQ treatment. METHODS: Pregnant Sprague-Dawley rats received a single intravenous injection (100 µL) of vehicle (saline) or nMitoQ (125 µmol/L) on gestational day (GD)15 and were exposed to normoxia (21% O2) or hypoxia (11% O2) from GD15 to GD21 (term = 22 days). Coronary and mesenteric arteries were isolated from the 4-month-old female and male offspring, and vasoconstriction responses to U46619 (TxA2 analog) were evaluated using wire myography. In mesenteric arteries, L-NAME (pan-NO synthase (NOS) inhibitor) was used to assess NO modulation. Mesenteric artery endothelial (e)NOS, and TxA2 receptor expression, superoxide, and 3-nitrotyrosine levels were assessed by immunofluorescence. RESULTS: Prenatal hypoxia resulted in increased U46619 responsiveness in coronary and mesenteric arteries of the female offspring, and to a lesser extent in the male offspring, which was prevented by nMitoQ. In females, there was a reduced impact of L-NAME in mesenteric arteries of the prenatal hypoxia saline-treated females, and reduced 3-nitrotyrosine levels. In males, L-NAME increased U46619 responses in mesenteric artery to a similar extent, but TxA2 receptor expression was increased by prenatal hypoxia. There were no changes in eNOS or superoxide levels. CONCLUSIONS: Prenatal hypoxia increased TxA2 vasoconstrictor capacity in the adult offspring in a sex-specific manner, via reduced NO modulation in females and increased TP expression in males. Maternal placental antioxidant treatment prevented the impact of prenatal hypoxia. These findings increase our understanding of how complicated pregnancies can lead to a sex difference in the programming of cardiovascular disease in the adult offspring.


Prenatal hypoxia, when the fetus does not receive enough oxygen, is a common problem during pregnancy that impacts the developing fetus. It is associated with an increased risk of cardiovascular disease in the offspring in adulthood. While the mechanisms are not fully understood, the blood vessel function in the offspring may be impacted by prenatal hypoxia. We hypothesize that prenatal hypoxia increases the constriction of the blood vessels in the offspring. The placenta, an essential organ for fetal development, supplies oxygen and nutrients to the fetus. In prenatal hypoxia pregnancies, the placenta does not work properly. We have been studying a placental treatment (called nMitoQ) to improve placenta function and thereby the blood vessel function of the offspring. We used a rat model of prenatal hypoxia, where pregnant rats (dams) were placed in a low oxygen environment (hypoxia) during the last trimester of pregnancy. Control rats were kept in normal oxygen conditions. The dams were treated with nMitoQ, or with saline (control). Next, we studied the blood vessels of the offspring in adulthood. We found that prenatal hypoxia increases the constriction of the blood vessels, which was prevented by treating the dams with nMitoQ. Interestingly, this impact was more severe in females compared to males, and the mechanisms were different between the sexes. This study helps in the understanding of how complicated pregnancies can impair cardiovascular health in the offspring, and in a potential development of targeted and sex-specific therapies for those offspring at high risk for future cardiovascular disease.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Ratas Sprague-Dawley , Caracteres Sexuales , Tromboxano A2 , Vasoconstricción , Animales , Femenino , Embarazo , Vasoconstricción/efectos de los fármacos , Masculino , Tromboxano A2/metabolismo , Antioxidantes/farmacología , Óxido Nítrico/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Ratas , Hipoxia/metabolismo , Hipoxia Fetal/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología
2.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37686430

RESUMEN

Prenatal hypoxia is associated with placental oxidative stress, leading to impaired fetal growth and an increased risk of cardiovascular disease in the adult offspring; however, the mechanisms are unknown. Alterations in mitochondrial function may result in impaired cardiac function in offspring. In this study, we hypothesized that cardiac mitochondrial function is impaired in adult offspring exposed to intrauterine hypoxia, which can be prevented by placental treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). Cardiac mitochondrial respiration was assessed in 4-month-old rat offspring exposed to prenatal hypoxia (11% O2) from gestational day (GD)15-21 receiving either saline or nMitoQ on GD 15. Prenatal hypoxia did not alter cardiac mitochondrial oxidative phosphorylation capacity in the male offspring. In females, the NADH + succinate pathway capacity decreased by prenatal hypoxia and tended to be increased by nMitoQ. Prenatal hypoxia also decreased the succinate pathway capacity in females. nMitoQ treatment increased respiratory coupling efficiency in prenatal hypoxia-exposed female offspring. In conclusion, prenatal hypoxia impaired cardiac mitochondrial function in adult female offspring only, which was improved with prenatal nMitoQ treatment. Therefore, treatment strategies targeting placental oxidative stress in prenatal hypoxia may reduce the risk of cardiovascular disease in adult offspring by improving cardiac mitochondrial function in a sex-specific manner.


Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Femenino , Masculino , Embarazo , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Placenta , Vitaminas , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Mitocondrias , Succinatos
3.
Am J Physiol Heart Circ Physiol ; 325(1): H136-H141, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235521

RESUMEN

Prenatal hypoxia is associated with enhanced susceptibility to cardiac ischemia-reperfusion (I/R) injury in adult offspring, however, the mechanisms remain to be fully investigated. Endothelin-1 (ET-1) is a vasoconstrictor that acts via endothelin A (ETA) and endothelin B (ETB) receptors and is essential in maintaining cardiovascular (CV) function. Prenatal hypoxia alters the ET-1 system in adult offspring possibly contributing to I/R susceptibility. We previously showed that ex vivo application of ETA antagonist ABT-627 during I/R prevented the recovery of cardiac function in prenatal hypoxia-exposed males but not in normoxic males nor normoxic or prenatal hypoxia-exposed females. In this follow-up study, we examined whether placenta-targeted treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ) during hypoxic pregnancies could alleviate this hypoxic phenotype observed in adult male offspring. We used a rat model of prenatal hypoxia where pregnant Sprague-Dawley rats were exposed to hypoxia (11% O2) from gestational days (GD) 15-21 after injection with 100 µL saline or nMitoQ (125 µM) on GD15. Male offspring were aged to 4 mo and ex vivo cardiac recovery from I/R was assessed. Offspring born from hypoxic pregnancies and treated with nMitoQ had increased cardiac recovery from I/R in the presence of ABT-627 compared with their untreated counterparts where ABT-627 prevented recovery. Cardiac ETA levels were increased in males born from hypoxic pregnancies with nMitoQ treatment compared with saline controls (Western blotting). Our data indicate a profound impact of placenta-targeted treatment to prevent an ETA receptor cardiac phenotype observed in adult male offspring exposed to hypoxia in utero.NEW & NOTEWORTHY In this follow-up study, we showed a complete lack of recovery from I/R injury after the application of an ETA receptor antagonist (ABT-627) in adult male offspring exposed to hypoxia in utero while maternal treatment with nMitoQ during prenatal hypoxia exposure prevented this effect. Our data suggest that nMitoQ treatment during hypoxic pregnancies may prevent a hypoxic cardiac phenotype in adult male offspring.


Asunto(s)
Hipoxia , Receptores de Endotelina , Embarazo , Femenino , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Atrasentán , Estudios de Seguimiento , Hipoxia/complicaciones , Placenta , Endotelina-1
4.
Pharmacol Res ; 165: 105461, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33513355

RESUMEN

Offspring born from complicated pregnancies are at greater risk of cardiovascular disease in adulthood. Prenatal hypoxia is a common pregnancy complication that results in placental oxidative stress and impairs fetal development. Adult offspring exposed to hypoxia during fetal life are more susceptible to develop cardiac dysfunction, and show decreased cardiac tolerance to an ischemia/reperfusion (I/R) insult. To improve offspring cardiac outcomes, we have assessed the use of a placenta-targeted intervention during hypoxic pregnancies, by encapsulating the mitochondrial antioxidant MitoQ into nanoparticles (nMitoQ). We hypothesized that maternal nMitoQ treatment during hypoxic pregnancies improves cardiac tolerance to I/R insult in adult male and female offspring. Pregnant Sprague-Dawley rats were exposed to normoxia (21 % O2) or hypoxia (11 % O2) from gestational day 15-20, after injection with 100 µL saline or nMitoQ (125 µM) on GD15 (n=6-8/group). Male and female offspring were aged to 4 months. Both male and female offspring from hypoxic pregnancies showed reduced cardiac tolerance to I/R (assessed ex vivo using the isolated working heart technique) which was ameliorated by nMitoQ treatment. To identify potential molecular mechanisms for the changes in cardiac tolerance to I/R, cardiac levels/phosphorylation of proteins important for intracellular Ca2+ cycling were assessed with Western blotting. In prenatally hypoxic male offspring, improved cardiac recovery from I/R by nMitoQ was accompanied by increased cardiac phospholamban and phosphatase 2Ce levels, and a trend to decreased Ca2+/calmodulin-dependent protein kinase IIδ phosphorylation. In contrast, in female offspring, nMitoQ treatment in hypoxic pregnancies increased phospholamban and protein kinase Cε phosphorylation. Maternal nMitoQ treatment improves cardiac tolerance to I/R insult in adult offspring and thus has the potential to improve the later-life trajectory of cardiovascular health of adult offspring born from pregnancies complicated by prenatal hypoxia.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Hipoxia/metabolismo , Compuestos Organofosforados/administración & dosificación , Placenta/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Daño por Reperfusión/metabolismo , Ubiquinona/análogos & derivados , Factores de Edad , Animales , Antioxidantes/administración & dosificación , Enfermedades Cardiovasculares/prevención & control , Femenino , Hipoxia/tratamiento farmacológico , Masculino , Nanopartículas/administración & dosificación , Placenta/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Ubiquinona/administración & dosificación
5.
Neuronal Signal ; 2(4): NS20180139, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32714596

RESUMEN

Prenatal development is a critical period for programming of neurological disease. Preeclampsia, a pregnancy complication involving oxidative stress in the placenta, has been associated with long-term health implications for the child, including an increased risk of developing schizophrenia and autism spectrum disorders in later life. To investigate if molecules released by the placenta may be important mediators in foetal programming of the brain, we analysed if placental tissue delivered from patients with preeclampsia secreted molecules that could affect cortical cells in culture. Application of culture medium conditioned by preeclamptic placentae to mixed cortical cultures caused changes in neurons and astrocytes that were related to key changes observed in brains of patients with schizophrenia and autism, including effects on dendrite lengths, astrocyte number as well as on levels of glutamate and γ-aminobutyric acid receptors. Treatment of the placental explants with an antioxidant prevented neuronal abnormalities. Furthermore, we identified that bidirectional communication between neurons and astrocytes, potentially via glutamate, is required to produce the effects of preeclamptic placenta medium on cortical cells. Analysis of possible signalling molecules in the placenta-conditioned medium showed that the secretion profile of extracellular microRNAs, small post-transcriptional regulators, was altered in preeclampsia and partially rescued by antioxidant treatment of the placental explants. Predicted targets of these differentially abundant microRNAs were linked to neurodevelopment and the placenta. The present study provides further evidence that the diseased placenta may release factors that damage cortical cells and suggests the possibility of targeted antioxidant treatment of the placenta to prevent neurodevelopmental disorders.

6.
Sci Rep ; 7(1): 9079, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28831049

RESUMEN

Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Desarrollo Fetal , Hipoxia/metabolismo , Placenta/metabolismo , Complicaciones del Embarazo/metabolismo , Animales , Antioxidantes/metabolismo , Biomarcadores , Femenino , Feto/metabolismo , Expresión Génica , Microscopía Confocal , Organogénesis , Estrés Oxidativo , Embarazo , Ratas , Especies Reactivas de Oxígeno/metabolismo
7.
Exp Neurol ; 261: 386-95, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24818543

RESUMEN

Some psychiatric diseases in children and young adults are thought to originate from adverse exposures during foetal life, including hypoxia and hypoxia/reoxygenation. The mechanism is not understood. Several authors have emphasised that the placenta is likely to play an important role as the key interface between mother and foetus. Here we have explored whether a first trimester human placenta or model barrier of primary human cytotrophoblasts might secrete factors, in response to hypoxia or hypoxia/reoxygenation, that could damage neurones. We find that the secretions in conditioned media caused an increase of [Ca(2+)]i and mitochondrial free radicals and a decrease of dendritic lengths, branching complexity, spine density and synaptic activity in dissociated neurones from embryonic rat cerebral cortex. There was altered staining of glutamate and GABA receptors. We identify glutamate as an active factor within the conditioned media and demonstrate a specific release of glutamate from the placenta/cytotrophoblast barriers invitro after hypoxia or hypoxia/reoxygenation. Injection of conditioned media into developing brains of P4 rats reduced the numerical density of parvalbumin-containing neurones in cortex, hippocampus and reticular nucleus, reduced immunostaining of glutamate receptors and altered cellular turnover. These results show that the placenta is able to release factors, in response to altered oxygen, that can damage developing neurones under experimental conditions.


Asunto(s)
Encéfalo , Medios de Cultivo Condicionados/efectos adversos , Hipoxia , Neuronas/efectos de los fármacos , Oxígeno/farmacología , Placenta/química , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Hipoxia de la Célula/fisiología , Células Cultivadas , Corteza Cerebral/citología , Medios de Cultivo Condicionados/química , Dendritas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Femenino , Feto , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/patología , Hipoxia/fisiopatología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/citología , Neuronas/fisiología , Placenta/citología , Embarazo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...