Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Physiol ; 602(15): 3693-3713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970617

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.


Asunto(s)
Contracción Muscular , Músculo Liso , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/fisiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Contracción Muscular/fisiología , Músculo Liso/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ratas , Masculino , Carbacol/farmacología , Capsaicina/farmacología , Calcio/metabolismo , Ratas Sprague-Dawley , Ratas Wistar
2.
BBA Adv ; 3: 100069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082258

RESUMEN

Tunica dartos smooth muscle (TDSM) lies beneath the scrotal skin, and its contraction leads to scrotum wrinkling upon cooling. However, neither the nature of TDSM cold-sensitivity nor the underlying molecular sensors are well understood. Here we have investigated the role of cold/menthol-sensitive TRPM8 channel in TDSM temperature-dependent contractility. The contraction of isolated male rat TDSM strips was studied by tensiometry. TRPM8 expression was assayed by RT-PCR and fluorescence immunochemistry. Isolated TDSM strips responded to cooling from 33 °C to 20 °C by enhancement of basal tension, and increase of the amplitude and duration of electric field stimulated (EFS) contractions. The effects of cold on basal tension, but not on EFS-contractions, could be 80% inhibited by TRPM8 blockers, capsazepine and BCTC [N-(4­tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide], and could be partially mimicked by menthol. RT-PCR and immunolabeling showed TRPM8 mRNA and protein expression in TDSM cells with protein labelling being predominantly localized to intracellular compartments. Chemical castration of male rats consequent to the treatment with androgen receptor blocker, flutamide, led to the abrogation of cold effects on TDSM basal tension, but not on EFS-contractions, and to the disappearance of TRPM8 protein expression. We conclude that TRPM8 is involved in the maintenance of basal cold-induced TDSM tonus, but not in sympathetic nerve-mediated contractility, by acting as endoplasmic reticulum Ca2+ release channel whose expression in TDSM cells requires the presence of a functional androgen receptor. Thus, TRPM8 plays a crucial role in scrotal thermoregulation which is important for maintaining normal spermatogenesis and male fertility.

3.
Neurourol Urodyn ; 41(8): 1670-1678, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35979707

RESUMEN

AIMS: The urinary bladder is a mechanosensitive organ that accumulates, stores, and expels considerable amounts of fluid. While the neuronal bladder control via the CNS is well defined, the data on the mechanisms of local mechanical sensitivity of the bladder wall are either insufficient or contradictory. Here we compared the mechanical properties of bladder wall of normal rats and rats with modeled type 2 diabetes (T2D). METHODS: T2D was modeled in 3-month-old Wistar male rats by combined administration of nicotinamide (230 mg/kg) and streptozotocin (65 mg/kg). Cystometry of isolated, denervated whole bladders and stress-strain tensiometry on detrusor smooth muscle (DSM) strips were used to assess the mechanical properties of bladder wall tissues from control and diabetic animals on 10th week after induction. RESULTS: The pressure-volume cystometrograms of both control and T2D bladders featured a quasi plateau between ascending sections. T2D cystometrograms revealed markedly elevated intravesicular pressure (~100% at 1 ml) and a shortened plateau, consistent with decreased bladder wall elasticity and reduced structural bladder capacity versus control. Experiments on urothelium-intact and urothelium-devoid DSM strips have shown that the decrease of bladder walls elasticity in T2D can be explained by the switch of stretched urothelium from inducing DSM relaxation to inducing DSM contraction due to a change in the prevalent release of contractile versus relaxing urothelial factor(s). CONCLUSIONS: The decreased elasticity of the bladder walls in T2D results from alterations in urothelium-dependent mechanosensory mechanisms. Elevated intravesical pressure in T2D may contribute to urge incontinence and/or symptoms of upper urinary tract damage.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vejiga Urinaria , Ratas , Masculino , Animales , Diabetes Mellitus Tipo 2/complicaciones , Ratas Wistar , Urotelio , Músculo Liso/fisiología , Contracción Muscular
4.
Sci Rep ; 10(1): 19651, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184390

RESUMEN

Urinary incontinence of idiopathic nature is a common complication of bladder cancer, yet, the mechanisms underlying changes in bladder contractility associated with cancer are not known. Here by using tensiometry on detrusor smooth muscle (DSM) strips from normal rats and rats with bladder cancer induced by known urothelial carcinogen, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), we show that bladder cancer is associated with considerable changes in DSM contractility. These changes include: (1) decrease in the amplitude and frequency of spontaneous contractions, consistent with the decline of luminal pressures during filling, and detrusor underactivity; (2) diminution of parasympathetic DSM stimulation mainly at the expense of m-cholinergic excitatory transmission, suggestive of difficulty in bladder emptying and weakening of urine stream; (3) strengthening of TRPV1-dependent afferent limb of micturition reflex and TRPV1-mediated local contractility, promoting urge incontinence; (4) attenuation of stretch-dependent, TRPV4-mediated spontaneous contractility leading to overflow incontinence. These changes are consistent with the symptomatic of bladder dysfunction in bladder cancer patients. Considering that BBN-induced urothelial lesions in rodents largely resemble human urothelial lesions at least in their morphology, our studies establish for the first time underlying reasons for bladder dysfunction in bladder cancer.


Asunto(s)
Contracción Muscular , Canales Catiónicos TRPV/metabolismo , Neoplasias de la Vejiga Urinaria/fisiopatología , Vejiga Urinaria/fisiopatología , Incontinencia Urinaria/etiología , Animales , Butilhidroxibutilnitrosamina/toxicidad , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/metabolismo , Incontinencia Urinaria/metabolismo , Incontinencia Urinaria/patología
5.
Eur J Pharmacol ; 860: 172529, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31299187

RESUMEN

Parasympathetic regulation of urinary bladder contractions primarily involves acetylcholine release and activation of detrusor smooth muscle (DSM) muscarinic acetylcholine (mACh) receptors. Co-release of ATP and activation of DSM purinergic P2X1-receptors may participate as well in some species. Both types of neuromuscular transmission (NMT) are impaired in diabetes, however, which factors may contribute to such impairment remains poorly understood. Here by using rats with streptozotocin(STZ)-induced type I diabetes (8th week after induction) we show that contribution of atropine-sensitive m-cholinergic component to the contractions of urothelium-denuded DSM strips evoked by electric field stimulation (EFS) greatly increased when diabetic bladders presented overt signs of accompanying cystitis. Modeling of hemorrhagic cystitis alone in control rats by cyclophosphamide injection only modestly increased m-cholinergic component of EFS-contractions. However, exposure of DSM strips from control animals to acetylcholinesterase (AChE) inhibitor, neostigmine (1-10 µM) largely reproduced alterations in EFS contractions observed in diabetic DSM complicated by cystitis. Ellman's assay revealed statistically significant 31% decrease of AChE activities in diabetic vs. control DSM. Changes in purinergic contractility of diabetic DSM were consistent with altered P2X1-receptor desensitization and re-sensitization. They could be mimicked by pharmacological inhibition of ATP-degrading ecto-ATPases with ARL 67156 (50 µM), pointing to compromised extracellular ATP clearance as underlying reason. We conclude that decreased AChE activities associated with diabetes and likely cystitis provide complementary factor to the described in literature altered expression of mACh receptor subtypes linked to diabetes as well as to cystitis to produce dramatic modification of cholinergic NMT.


Asunto(s)
Acetilcolina/metabolismo , Cistitis/complicaciones , Diabetes Mellitus Tipo 1/enzimología , Diabetes Mellitus Tipo 1/fisiopatología , Contracción Muscular , Neurotransmisores/metabolismo , Vejiga Urinaria/fisiopatología , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Espacio Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica , Masculino , Ratas , Ratas Wistar
6.
Life Sci ; 193: 207-213, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29100756

RESUMEN

AIMS: More than half of diabetic patients experience voiding disorder termed diabetic urinary bladder dysfunction (DBD). Here we have investigated how the alterations in transient receptor potential vanilloid 1 (TRPV1) ion channel expressed in bladder-innervating afferents may contribute to DBD pathogenesis. MAIN METHODS: The rat model of streptozotocin (STZ)-induced diabetes was used. The functional profile of TRPV1 in retrogradely labeled afferent, bladder-innervating dorsal root ganglia (DRG) neurons was examined using patch clamp. The level of TRPV1 transcripts in DRG was assessed with qRT-PCR. TRPV1-dependent component of detrusor smooth muscle (DSM) contractions was studied with muscle strip tensiometry. KEY FINDINGS: TRPV1-mediated current (ITRPV1) was increased in diabetic animals vs. controls by 42%. The expression of Trpv1 gene was found to be 63% higher in STZ-treated rats compared to controls, consistent with the respective electrophysiological data. Surprisingly, capsaicin-induced contractions of DSM were found to be 3-to-10-fold weaker in diabetic group depending on concentration of the agonist (100nM to 10µM). SIGNIFICANCE: Our findings suggest the dual role of TRPV1 in DBD. On the one hand, the increase of its functional expression may enhance micturition reflex arc functioning. On the other hand, at the local level, the decrease of TRPV1-dependent contractions may contribute to organ decompensation.


Asunto(s)
Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/fisiopatología , Animales , Capsaicina/farmacología , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Reflejo/efectos de los fármacos , Estreptozocina/metabolismo , Canales Catiónicos TRPV/genética , Vejiga Urinaria/metabolismo
7.
Naunyn Schmiedebergs Arch Pharmacol ; 389(6): 585-92, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26976335

RESUMEN

Flocalin (FLO) is a new ATP-sensitive K(+) (KATP) channel opener (KCO) derived from pinacidil (PIN) by adding fluorine group to the drug's structure. FLO acts as a potent cardioprotector against ischemia-reperfusion damage in isolated heart and whole animal models primarily via activating cardiac-specific Kir6.2/SUR2A KATP channels. Given that FLO also confers relaxation on several types of smooth muscles and can partially inhibit L-type Ca(2+) channels, in this study, we asked what is the mechanism of FLO action in bladder detrusor smooth muscle (DSM). The actions of FLO and PIN on contractility of rat and guinea pig DSM strips and membrane currents of isolated DSM cells were compared by tensiometry and patch clamp. Kir6 and SUR subunit expression in rat DSM was assayed by reverse transcription PCR (RT-PCR). In contrast to PIN (10 µM), FLO (10 µM) did not produce glibenclamide-sensitive DSM strips' relaxation and inhibition of spontaneous and electrically evoked contractions. However, FLO, but not PIN, inhibited contractions evoked by high K(+) depolarization. FLO (40 µM) did not change the level of isolated DSM cell's background K(+) current, but suppressed by 20 % L-type Ca(2+) current. Determining various Kir6 and SUR messenger RNA (mRNA) expressions in rat DSM by RT-PCR indicated that dominant KATP channel in rat DSM is of vascular type involving association of Kir6.1 and SUR2B subunits. Myorelaxant effects of FLO in bladder DSM are explained by partial blockade of L-type Ca(2+) channel-mediated Ca(2+) influx rather than by hyperpolarization associated with increased K(+) permeability. Thus, insertion of fluorine group in PIN's structure made the drug more discriminative between Kir6.2/SUR2A cardiac- and Kir6.1/SUR2B vascular-type KATP channels and rendered it partial L-type Ca(2+) channel-blocking potency.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales KATP/agonistas , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Pinacidilo/análogos & derivados , Vejiga Urinaria/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/química , Canales de Calcio Tipo L/metabolismo , Estimulación Eléctrica , Cobayas , Técnicas In Vitro , Canales KATP/genética , Canales KATP/metabolismo , Masculino , Potenciales de la Membrana , Estructura Molecular , Músculo Liso/metabolismo , Pinacidilo/química , Pinacidilo/farmacología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Receptores de Sulfonilureas/agonistas , Receptores de Sulfonilureas/metabolismo , Vejiga Urinaria/metabolismo
8.
J Smooth Muscle Res ; 52: 1-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26935999

RESUMEN

TRPA1 is a Ca(2+)-permeable cation channel that is activated by painful low temperatures (<17°C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors - tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Contracción Muscular/genética , Contracción Muscular/fisiología , Músculo Liso/fisiopatología , Canales Catiónicos TRPC/fisiología , Vejiga Urinaria/fisiopatología , Animales , Ciclooxigenasa 2/fisiología , Masculino , Prostaglandinas/biosíntesis , Ratas Wistar , Estreptozocina , Sustancia P/metabolismo , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/metabolismo
9.
J Surg Res ; 186(1): 119-25, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24157266

RESUMEN

BACKGROUND: Bipolar electrosurgical tissue welding uses forceps-like electrodes for grasping the tissues and delivering high-frequency electric current (HFEC) to produce local heat, desiccation, and protein denaturation, resulting in the fusion of the contacting tissues. Although in this technique no electric current is flowing through the whole body to cause electric injury, depending on the frequency of applied energy, it may produce local excitation of intramural nerves, which can propagate beyond the surgical site potentially causing harmful effects. MATERIALS AND METHODS: The effects of varying frequency of HFEC on tissue excitability in bipolar electrosurgical modality were studied in vitro using electric field stimulation (EFS) method on multicellular smooth muscle strips of rat vas deferens. Contractile response to 5-s-long sine wave EFS train was taken as the measure of excitation of intramural nerves. RESULTS: EFS-induced contraction consisted of phasic and tonic components. The amplitude of both components decreased with increasing frequency, with tonic component disappearing at about 10 kHz and phasic component at about 50 kHz. Because components of EFS-induced contraction depend on different neurotransmitters, this indicates that various neurotransmitter systems are characterized by distinct frequency dependence, but above 50 kHz they all become inactivated. Bipolar electrosurgical sealing of porcine gut showed no difference in the structure of seal area at HFEC of 67 and 533 kHz. CONCLUSIONS: EFS frequency of 50 kHz represents the upper limit for excitation. HFEC above 50 kHz is safe to use for bipolar electrosurgical tissue welding without concerns of excitation propagating beyond the surgical site.


Asunto(s)
Electrocirugia/métodos , Acoplamiento Excitación-Contracción , Músculo Liso/fisiología , Animales , Estimulación Eléctrica , Masculino , Ratas , Ratas Wistar , Conducto Deferente/fisiología
10.
Life Sci ; 91(19-20): 912-20, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22982418

RESUMEN

AIMS: TRPV1-expressing, capsaicin (CAP)-sensitive afferent fibers innervating bladder in addition to sensory function also exhibit "efferent" features consisting in TRPV1-dependent release of tachykinins (TAC) affecting detrusor smooth muscle (DSM) contractions. Our aim was to investigate the effects of two novel polypeptide inhibitors of TRPV1 from the venom of tropical sea anemone Heteractis crispa, APHC1 and APHC3, on the contractions of DSM from bladders of normal and diabetic rats. MAIN METHODS: Experiments were conducted on urothelium-devoid DSM strips from normal rats and rats 8weeks after streptozotocin-induced diabetes by means of contraction force measurements. KEY FINDINGS: Pre-exposure of DSM strips to APHC1 or APHC3 (200nM) specifically inhibited CAP-induced, TRPV1-dependent contractions. Both peptides also transiently enhanced basal tone and spontaneous contractions of DSM strips followed by delayed suppression of electric field stimulation (EFS)-evoked nonadrenergic-noncholinergic (NANC) contractions. The decrease of the amplitude of EFS-evoked NANC contractions by АРНС1 or АРНС3 reached 38.5±3.4% and 25.1±1.6%, respectively, in normal DSM strips and 46.3±3.3% and 43.9±1.8%, respectively, in diabetic ones. APHC-peptide-induced transient enhancement of basal tone could be mimicked by serine protease inhibitor, 4-(2-aminoethyl)bezenesulfonyl fluoride (300 µM). SIGNIFICANCE: Our results demonstrate that АРНС1 and АРНС3 may be considered as effective inhibitors of bladder contractility especially during diabetic cystopathy. Modality of action of APHC-polypeptides via the mechanisms involving decreased TRPV1-dependent release of TAC from bladder afferents and suppression of TAC degradation due to their activity as endogenous proteases inhibitors is proposed.


Asunto(s)
Venenos de Cnidarios/farmacología , Toxinas Marinas/farmacología , Contracción Muscular/efectos de los fármacos , Péptidos/farmacología , Canales Catiónicos TRPV/metabolismo , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Animales , Capsaicina/farmacología , Venenos de Cnidarios/aislamiento & purificación , Diabetes Mellitus Experimental/fisiopatología , Estimulación Eléctrica , Péptidos y Proteínas de Señalización Intercelular , Masculino , Toxinas Marinas/aislamiento & purificación , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Péptidos/aislamiento & purificación , Ratas , Ratas Wistar , Anémonas de Mar , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA