Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17601, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080452

RESUMEN

Biodegradable poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) triblock copolymer could potentially be used in bioplastic applications because it is more flexible than PLLA. However, investigations into modifying PLLA-PEG-PLLA with effective fillers are still required. In this work, bamboo biochar (BC) was used as an eco-friendly and cost-effective filler for the flexible PLLA-PEG-PLLA. The influences of BC addition on crystallization properties, thermal stability, hydrophilicity, and mechanical properties of the PLLA-PEG-PLLA were explored and compared to those of the PLLA. The PLLA-PEG-PLLA matrix and BC filler were found to have strong interfacial adhesion and good phase compatibility, while the PLLA/BC composites displayed weak interfacial adhesion and poor phase compatibility. For the PLLA-PEG-PLLA, the addition of BC induced a nucleation effect that was characterized by a decrease in the cold crystallization temperature from 76 to 71-75 °C and an increase in the crystallinity from 18.6 to 21.8-24.0%; however, this effect was not observed for the PLLA. When compared to pure PLLA-PEG-PLLA, the PLLA-PEG-PLLA/BC composites displayed greater thermal stability, tensile stress, and Young's modulus. Temperature at maximum decomposition rate (Td,max) of PLLA end-blocks increased from 315 to 319-342 °C. Ultimate tensile stress of PLLA-PEG-PLLA matrix improved from 14.5 to 16.2-22.6 MPa and Young's modulus increased from 220 to 280-340 MPa. Based on the findings, the crystallizability, thermal stability, and mechanical properties of the flexible PLLA-PEG-PLLA bioplastic were all enhanced by the use of BC as a multi-functional filler.


Asunto(s)
Carbón Orgánico , Poliésteres , Polietilenglicoles , Poliésteres/química , Polietilenglicoles/química , Carbón Orgánico/química , Materiales Biocompatibles/química , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Cristalización
2.
Front Microbiol ; 15: 1347119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638899

RESUMEN

The versatility of plastic has resulted in huge amounts being consumed annually. Mismanagement of post-consumption plastic material has led to plastic waste pollution. Biodegradation of plastic by microorganisms has emerged as a potential solution to this problem. Therefore, this study aimed to investigate the microbial communities involved in the biodegradation of polypropylene (PP). Mangrove soil was enriched with virgin PP sheets or chemically pretreated PP comparing between 2 and 4 months enrichment to promote the growth of bacteria involved in PP biodegradation. The diversity of the resulting microbial communities was accessed through 16S metagenomic sequencing. The results indicated that Xanthomonadaceae, unclassified Gaiellales, and Nocardioidaceae were promoted during the enrichment. Additionally, shotgun metagenomics was used to investigate enzymes involved in plastic biodegradation. The results revealed the presence of various putative plastic-degrading enzymes in the mangrove soil, including alcohol dehydrogenase, aldehyde dehydrogenase, and alkane hydroxylase. The degradation of PP plastic was determined using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Water Contact Angle measurements. The FTIR spectra showed a reduced peak intensity of enriched and pretreated PP compared to the control. SEM images revealed the presence of bacterial biofilms as well as cracks on the PP surface. Corresponding to the FTIR and SEM analysis, the water contact angle measurement indicated a decrease in the hydrophobicity of PP and pretreated PP surface during the enrichment.

3.
Polymers (Basel) ; 16(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337252

RESUMEN

Due to global warming and environmental concerns, developing a fully bio-based nanocomposite is an attractive issue. In this work, the cellulose nanocrystals (CNCs) extracted from Luffa cylindrica, a renewable resource, were explored as a bio-based reinforcing filler in natural rubber (NR) nanocomposites. In addition, modified natural rubber was explored as a potential compatibilizer to assist the filler dispersion in the rubber nanocomposite. The effect of the CNC content (0-15 phr) on cure characteristics and the mechanical, dynamic, and thermal properties of NR/CNC nanocomposites was investigated. The results showed that the scorch time and cure time of the nanocomposites increased with increased CNC contents. The optimum tensile strength of NR nanocomposites having 5 phr of the CNC (NR-CNC5) was 20.60% higher than the corresponding unfilled NR vulcanizate, which was related to the increased crosslink density of the rubber nanocomposite. The incorporation of oxidized-degraded NR (ODNR) as a compatibilizer in the NR-CNC5 nanocomposite exhibited a considerably reduced cure time, which will lead to energy conservation during production. Moreover, the cure rate index of NR-CNC5-ODNR is much higher than using a petroleum-based silane coupling agent (Si69) as a compatibilizer in the NR-CNC5 nanocomposite. The good filler dispersion in the NR-CNC5 nanocomposite compatibilized by ODNR is comparable to the use of Si69, evidenced by scanning electron microscopy. There is, therefore, a good potential for the use of modified NR as a bio-based compatibilizer for rubber nanocomposites.

4.
Polymers (Basel) ; 16(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38257031

RESUMEN

Poly(lactic acid) (PLA), derived from renewable resources, plays a significant role in the global biodegradable plastic market. However, its widespread adoption faces challenges, including high brittleness, hydrophobicity, limited biodegradability, and higher costs compared to traditional petroleum-based plastics. This study addresses these challenges by incorporating thermoplastic pineapple stem starch (TPSS) and modified natural rubber (MNR) into PLA blends. TPSS, derived from pineapple stem waste, is employed to enhance hydrophilicity, biodegradability, and reduce costs. While the addition of TPSS (10 to 40 wt.%) marginally lowered mechanical properties due to poor interfacial interaction with PLA, the inclusion of MNR (1 to 10 wt.%) in the PLA/20TPSS blend significantly improved stretchability and impact strength, resulting in suitable modulus (1.3 to 1.7 GPa) and mechanical strength (32 to 52 MPa) for diverse applications. The presence of 7 wt.% MNR increased impact strength by 90% compared to neat PLA. The ternary blend exhibited a heterogeneous morphology with enhanced interfacial adhesion, confirmed by microfibrils and a rough texture on the fracture surface. Additionally, a downward shift in PLA's glass transition temperature (Tg) by 5-6 °C indicated improved compatibility between components. Remarkably, the PLA ternary blends demonstrated superior water resistance and proper biodegradability compared to binary blends. These findings highlight the potential of bio-based plastics, such as PLA blends with TPSS and MNR, to contribute to sustainable economic models and reduce environmental impact for using in plastic packaging applications.

5.
Polymers (Basel) ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959967

RESUMEN

Natural rubber (NR), an important natural polymer derived from the Hevea brasiliensis tree, has been widely used in the rubber industry owing to its excellent elastic properties. However, it requires reinforcing fillers to improve its mechanical properties for the manufacturing of rubber products. Generally, calcium carbonate (CaCO3) is employed as a non-reinforcing filler. This work aimed to synthesize spherical-shaped CaCO3 at a submicrometric scale without and with surface treatment and explore its utilization as a reinforcing filler in NR composites. The morphological shape and polymorphic phase of CaCO3 were investigated using SEM, TEM, XRD, ATR-FTIR and Raman techniques. The mechanical properties of various amounts (0 to 60 phr) of CaCO3-filled NR composites were explored. As a result, the NR/treated CaCO3 composites provided higher tensile strength than the NR/untreated CaCO3 composites and pure NR at all filler loadings. This may have been due to the improved interfacial interaction between NR and CaCO3 with the improved hydrophobicity of CaCO3 after treatment with olive soap. The optimal filler loading was 20 phr for the highest tensile strength of the rubber composites. In addition, the elongation at break of the NR/treated CaCO3 was slightly decreased. Evidence from SEM and FTIR revealed the vaterite polymorph and shape stability of CaCO3 particles in the NR matrix. The results demonstrate that the particle size and surface treatment of the filler have essential effects on the mechanical property enhancement of the rubber composites. Synthesized spherical CaCO3 could be a potential reinforcing filler with broader application in polymer composites.

6.
ACS Omega ; 8(39): 35693-35705, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810651

RESUMEN

This research aims to develop high-performance and low-carbon composites using biobased poly(butylene succinate) (PBS) reinforced with well-aligned pineapple leaf fibers (PALF). PBS/PALF composites containing 10 and 20% PALF by weight (wt %) were prepared using a two-roll mill. During the mixing process, the molten material was slightly stretched to align the fibers in the machine direction, forming a uniaxial prepreg. The prepreg was subsequently stacked and compressed into composite sheets at compression temperatures of 120 and 140 °C. Differential scanning calorimetry, X-ray diffraction, and crystalline morphology analysis revealed the presence of matrix orientation in the prepreg, which was preserved in sheets compressed at 120 °C but not at 140 °C. The composites prepared at 120 °C exhibited significantly higher flexural strength and modulus compared to those prepared at 140 °C, attributed to the combined effect of matrix and PALF orientation. Additionally, the composites displayed an increase in heat distortion temperature, with a maximum of 10 °C higher than the matrix melting temperature (∼113 °C) for the composite with 20 wt % PALF. These findings indicate the potential for increased utilization of this low-carbon green composite.

7.
Polymers (Basel) ; 15(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37896353

RESUMEN

Acrylated natural rubber (ANR) with various acrylate contents (0.0-3.5 mol%) was prepared from natural rubber as a raw material and then incorporated with commercial 3D resin to fabricate specimens using digital light processing. As a result, the utilization of ANR with 1.5 mol% acrylate content could provide the maximum improvement in stretchability and impact strength, approximately 155% and 221%, respectively, over using pure 3D resin, without significant deterioration of tensile modulus and mechanical strength. According to evidence from a scanning electron microscope, this might be due to the partial interaction between the dispersed small rubber particles and the resin matrix. Additionally, the glass-transition temperature of the 3D-printed sample shifted to a lower temperature by introducing a higher acrylate content in the ANR. Therefore, this work might offer a practical way to effectively enhance the properties of the fundamental commercial 3D resin and broaden its applications. It also makes it possible to use natural rubber as a bio-based material in light-based 3D printing.

8.
Polymers (Basel) ; 15(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765686

RESUMEN

Starch extracted from pineapple stem waste underwent an environmentally friendly modification process characterized by low-energy consumption. This process resulted in the creation of dialdehyde pineapple stem starch featuring varying aldehyde contents ranging from 10% to 90%. Leveraging these dialdehyde starches, thermosetting plastics were meticulously developed by incorporating glycerol as a plasticizer. Concurrently, unmodified pineapple stem starch was employed as a control to produce thermoplastic material under identical conditions. The objective of streamlining the processing steps was pursued by adopting a direct hot compression molding technique. This enabled the transformation of starch powders into plastic sheets without the need for water-based gelatinization. Consequently, the dialdehyde starch-based thermosetting plastics exhibited exceptional mechanical properties, boasting a modulus within the range of 1862 MPa to 2000 MPa and a strength of 15 MPa to 42 MPa. Notably, their stretchability remained relatively modest, spanning from 0.8% to 2.4%. Comparatively, these properties significantly outperformed the thermoplastic counterpart derived from unmodified starch. Tailoring the mechanical performance of the thermosetting plastics was achieved by manipulating the glycerol content, ranging from 30% to 50%. Phase morphologies of the thermoset starch unveiled a uniformly distributed microstructure without any observable starch particles. This stood in contrast to the heterogeneous structure exhibited by the thermoplastic derived from unmodified starch. X-ray diffraction patterns indicated the absence of a crystalline structure within the thermosets, likely attributed to the establishment of a crosslinked structure. The resultant network formation in the thermosets directly correlated with enhanced water resistance. Remarkably, the thermosetting starch originating from pineapple stem starch demonstrated continued biodegradability following a soil burial test, albeit at a notably slower rate when compared to its thermoplastic counterpart. These findings hold the potential to pave the way for the utilization of starch-based products, thereby replacing non-biodegradable petroleum-based materials and contributing to the creation of more enduring and sustainable commodities.

9.
ACS Omega ; 6(23): 14838-14847, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151065

RESUMEN

Natural rubber (NR), a natural product from the Hevea brasiliensis tree, has been developed as a photosensitive mechanical modifier utilized in lithography-based three-dimensional (3D) printing technology. Here, we transformed NR to photosensitive NR (PNR) by incorporating acrylate groups via chemical modifications. The acrylated NR was blended with a commercial resin (CR) at various rubber contents (0 to 3 wt %) by a simple mixing approach. The blended resin was solidified to pattern the desired specimen using a digital light processing-based 3D printer. The effect of PNR contents on mechanical properties and thermal performance of the printed specimen compared to the neat CR was studied in this work. A printed sample containing 1.5 wt % PNR can increase the elongation ability and impact strength by approximately 59 and 116%, respectively, compared to the neat CR. The microstructure of the printed objects shows a heterogeneous surface consisting of dispersed rubber droplets and a continuous CR matrix. Two glass transition temperatures belonging to the rubber phase and the resin matrix can be observed. The thermal decomposition of the printed part decreased slightly with the elevation in the rubber content. Consequently, the synthesized photosensitive natural rubber could be used as a toughness modifier employed in ultraviolet-curable resin for the light-based 3D printing technology.

10.
Carbohydr Polym ; 89(1): 251-8, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24750631

RESUMEN

The hydrophilicity of natural rubber (NR) was improved by grafting with modified cassava starch (ST) (NR-g-ST) by using potassium persulfate (K2S2O8) as a catalyst. The modified ST was added to NR latex in the presence of Terric16A16 as a non-ionic surfactant at 60 °C for 3 h and cast film on a glass plate to obtain NR-g-ST. The chemical structure of NR-g-ST was confirmed by FTIR. The swelling ratio of NR-g-ST was investigated in water and results showed that the swelling ratio of the modified NR decreased as function of ST. In addition, the tensile strength of the modified NR in the presence of modified ST at 50 phr was the highest value. Also, the thermal stability modified NR-g-ST was higher than of NR/ST blend confirmed by TGA. Finally, the NR-g-ST was used a polymer membrane for controlling urea fertilizer and it easily degraded in soil. This product with good controlled-release and water-retention could be especially useful in agricultural and horticultural applications.


Asunto(s)
Fertilizantes , Compuestos de Potasio/química , Goma/química , Almidón/química , Sulfatos/química , Urea/química , Manihot , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
11.
J Biosci Bioeng ; 112(2): 124-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21602099

RESUMEN

Vinyl decanoate-modified dextran macromolecules (DexT40-VD) were synthesized in dimethyl sulfoxide at 50°C using lipase AY from Candida rugosa for catalyzing transesterification between polysaccharide and vinyl fatty esters. The extent of dextran modification (quantified by the molar ratio of attached alkyl tails to sugar repeat units) with native-, pH-adjusted-, 18-crown-6 ether pretreated pH-adjusted-, and stepwise addition of pretreated lipase AY yielded <3%, 49%, 64% and 96% modified dextran respectively. Lipase AY accelerated the transesterification of DexT40 from 2- to 63-fold higher than the non-catalyzed system. This procedure was extended to other acyl donors showing that modification pattern exhibited regioselectivity depending on acyl donor structure. Regioselectivity equaled between 2- and 3-OH with saturated fatty acyl donors. The 2-OH was favored for unsaturated fatty acyl donors, while sterically hindered acyl donors oriented modification toward 3-OH position. DexT40-VD at 96% modification was a water-insoluble polymer forming 150nm diameter nanoparticles in water which can be used as drug carrier systems.


Asunto(s)
Candida/enzimología , Dextranos/biosíntesis , Lipasa/metabolismo , Biocatálisis , Éteres Corona/química , Decanoatos/química , Dextranos/química , Dimetilsulfóxido/química , Esterificación , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/química , Compuestos de Vinilo/química
12.
Appl Spectrosc ; 63(2): 233-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19215654

RESUMEN

This paper investigates the structural characteristics of polystyrene (PS) grafted on a natural rubber (NR) surface using Raman scattering spectroscopy. The nitroxide-mediated radical polymerization (NMRP) technique was used to achieve the graft copolymerization of PS onto the surface of NR film using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a nitroxide mediator. The reversible reaction between propagating radical and TEMPO of the NMRP process leads to a controlled radical polymerization of styrene on the NR surface. The grafting degree of PS on the NR was first measured by gravimetric methods. It was found to depend linearly on the grafting time. The characteristic signals detected by Raman scattering and by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy provide clear evidence of the PS being grafted onto the NR. The distribution of the grafted PS on the NR substrate was determined from the Raman mapping. It is seen that the grafting occurs homogeneously over the entire surface ( approximately 40 mole % PS). The study using the Raman depth profiling technique on the original sample compared with the analysis carried out on the sample prepared by cross-sectioning led to important and comparable information regarding the uniform distribution of PS grafting inside the substrate.

13.
Int J Pharm ; 287(1-2): 27-37, 2004 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-15541909

RESUMEN

Anti-tacking agents are always necessary in polymeric film coating formulations in order to prevent substrate agglomeration. The objective of this study was to investigate the abilities of certain nonionic surfactants in a group of sorbitan ester in reducing the tackiness of the films obtained from aqueous acrylic polymer dispersions (Eudragit), compared with those of talc and glyceryl monostearate (GMS). The results from the peel tests demonstrated that GMS, Span 60 and Span 40 could significantly reduce the tackiness of both Eudragit NE 30D and Eudragit RS 30D films. The mechanisms in reducing the film tackiness were investigated by analyzing the film compositions, using attenuated total internal reflectance infrared spectroscopy (ATR-IR) and optical microscopy. The storage modulus of the films was also examined. The results indicated that GMS, Span 60, and Span 40 could reduce the film tackiness by decreasing the polymer contents at the film surfaces, resulting in a notable reduction in the contact area of the polymers between the surfaces. The use of only 5% (w/w) of either GMS, Span 60 or Span 40 in the coating formulations is enough to prevent pellet agglomeration without adverse effects on film flexibility. The pellets coated with Eudragit RS 30D/RL 30D (9:1, w/w) did not exhibit any difference in the drug release profiles when either 100% (w/w) talc or 5% (w/w) GMS was used, whereas the formulations containing Span 60 or Span 40 gave a slightly faster release rate.


Asunto(s)
Ácidos Polimetacrílicos/química , Tensoactivos/farmacología , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA