Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(37): 87412-87423, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37421530

RESUMEN

Acetamiprid is a neonicotinoid insecticide used on a large scale and has been reported for oxidative stress-mediated toxicity and physiological alterations in mammals. The plant-derived natural antioxidant berberine (BBR) possesses protective potential against inflammation, structural changes, and cellular toxicity. The current study aimed to investigate the toxic effects of acetamiprid exposure and the antioxidative and anti-inflammatory efficacy of BBR in rat liver tissue. The results showed that intragastric exposure of acetamiprid (21.7 mg/kg b.wt, i.e., 1/10 of LD50) for 21 days significantly elicited oxidative stress as evidenced by lipid peroxidation, protein oxidation, and depletion of endogenous antioxidants. Furthermore, acetamiprid exposure elevated NF-κB, TNF-α, IL-1ß, IL-6, and IL-12 expression and caused structural alterations in liver tissue. Biochemical results showed that 2-h pre-treatment of BBR (150 mg/kg b.wt; 21 days) reduced damage to lipids and proteins, replenished GSH, enhanced SOD and catalase activities, and offered antioxidative effects against acetamiprid toxicity. Also, BBR suppressed inflammation by regulating NF-κB/TNF-α signaling in hepatic tissue of acetamiprid-intoxicated rats. Histopathological examination confirmed the hepatoprotective effects of BBR. Our findings indicate that BBR might be a potential ameliorative agent against oxidative stress-mediated hepatotoxicity.


Asunto(s)
Berberina , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Berberina/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Neonicotinoides/farmacología , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Mamíferos
2.
J Biochem Mol Toxicol ; 37(10): e23434, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37350525

RESUMEN

Acetamiprid (ACMP) is an extensively used neonicotinoid pesticide to control sucking and chewing insects and is known to cause nontarget toxicity. The present study aimed to evaluate the ameliorative potential of berberine (BBR)-a polyphenolic alkaloid- on ACMP-induced oxidative stress, mitochondrial dysfunctioning, and structural changes in different rat brain regions. The male Wistar rats were divided into four groups, that is, control, BBR-treated (150 mg/kg b.wt), ACMP-exposed (21.7 mg/kg b.wt) and BBR + ACMP co-treated; and were dosed intragastrically for 21 consecutive days. Results of the biochemical analysis showed that BBR significantly ameliorated ACMP-induced oxidative stress by decreasing lipid peroxidation and protein oxidation along with a marked increase in endogenous antioxidants and lowered AChE activity in rat brain regions. Inside mitochondria, BBR significantly attenuated the toxic effects of ACMP by increasing the activity of mitochondrial complexes. Findings of polymerase chain reaction also demonstrated the modulatory effects of BBR against ACMP-mediated downregulation of ND1, ND2, COX1, and COX4 subunits of mitochondrial complexes. The histopathological and ultrastructural examination also validated the biochemical and transcriptional alterations following toxicity of ACMP exposure and the protective potential of BBR against ACMP-induced neurotoxicity. Thus, the present study indicates the promising ameliorative potential of BBR against ACMP-induced neurotoxicity via its antioxidative and modulatory activities.

3.
Toxicol Mech Methods ; 32(9): 686-694, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35403558

RESUMEN

Background: Monocrotophos (MCP) is an organophosphate pesticide with well-known toxicity in mammals. Exposure of MCP is associated with altered molecular physiology at sub-cellular levels. This study investigated the efficacy of N-acetylcysteine (NAC) against MCP exposure mediated mitochondrial dysfunctions in hepatic tissue of rats.Methods: Male Wistar rats were given NAC (200 mg/kg b.wt), MCP (0.9 mg/kg b.wt) and NAC together with MCP, intragastrically for 28 consecutive days. Mitochondrial complexes activities were evaluated using biochemical analysis. mRNA expression of mitochondrial complexes subunits, PGC-1α and its downstream regulators were analyzed using polymerase chain reaction.Results: Exposure of MCP (0.9 mg/kg b.wt, intragastrically, 28 d) decreased mitochondrial complexes activities and gene expression of complexes subunits. The expression of PGC-1α, NRF-1, NRF-2, and Tfam was also reduced significantly. The administration of NAC (200 mg/kg b.wt, intragastrically, 28 d) significantly increased mitochondrial complexes activities and gene expression of complexes subunits. Additionally, NAC also maintained mitochondrial functions, and enhanced the gene expression of PGC-1α and its downstream regulators.Conclusion: The results of this study indicate that NAC prevents hepatic mitochondrial dysfunctions and maintains PGC-1α signaling. In conclusion, NAC might be speculated as a therapeutic agent for mitochondrial dysfunctions following toxic exposures.


Asunto(s)
Monocrotofos , Plaguicidas , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Animales , Hígado/metabolismo , Masculino , Mamíferos/metabolismo , Mitocondrias/metabolismo , Monocrotofos/metabolismo , Monocrotofos/toxicidad , Estrés Oxidativo , Plaguicidas/toxicidad , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
4.
Antioxidants (Basel) ; 11(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35052593

RESUMEN

Oxidative stress-mediated tissue damage is primarily involved in hepatic injuries and dysfunctioning. Natural antioxidants have been shown to exert hepatoprotective, anti-inflammatory and antiapoptotic properties. The present study evaluated the effect of N-acetylcysteine (NAC) against monocrotophos (MCP) exposure-induced toxicity in the rat liver. Albino Wistar rats were divided into four groups: (1) control, (2) NAC-treated, (3) MCP-exposure, (4) NAC and MCP-coexposure group. The dose of MCP (0.9 mg/kg b.wt) and NAC (200 mg/kg b.wt) were administered orally for 28 days. Exposure to MCP caused a significant increase in lipid peroxidation, protein oxidation and decreased glutathione content along with the depletion of antioxidant enzyme activities. Further MCP exposure increased pro-inflammatory cytokines levels and upregulated Bax and Caspase-3 expressions. MCP exposure also caused an array of structural alternations in liver tissue, as depicted by the histological and electron microscopic analysis. Thepretreatment of NAC improved glutathione content, restored antioxidant enzyme activities, prevented oxidation of lipids and proteins, decreased pro-inflammatory cytokines levels and normalized apoptotic protein expression. Treatment of NAC also prevented histological and ultrastructural alternations. Thus, the study represents the therapeutic efficacy and antioxidant potential of NAC against MCP exposure in the rat liver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...