Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Minerals (Basel) ; 10(4): 348, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32724664

RESUMEN

Medicinal earths are an important and yet, so far, little scientifically explored archaeological resource. They are almost always identified by their source locality. Our work over the last few years has focused on their chemical and mineralogical characterization and their testing as anti-bacterials. This paper presents the results of the mineralogical analysis and antibacterial testing of six medicinal earths, bole or Terra Sigillata (stamped earth) of unknown date and provenance in the Pharmacy Museum of the University of Basel. Only one of them, a red (Armenian?) 'bole', was found to be antibacterial against both Gram-positive and Gram-negative bacteria. A yellow powder of Terra Tripolitania was mildly antibacterial and against one pathogen only. We argue that medicinal earths are in a pivotal place to bridge the gap between currently dispersed pieces of information. This information relates to: (a) their nature, attributes, and applications as described in the texts of different periods, (b) the source of their clays and how best to locate them in the field today, and (c) the methods employed for their beneficiation, if known. We propose that work should be focused primarily onto those medicinal earths whose clay sources can be re-discovered, sampled and assessed. From then on, a parallel investigation should be initiated involving both earths and their natural clays (mineralogy at bulk and nano-sized levels, bio-geochemistry, microbiological testing). We argue that the combined study can shed light into the parameters driving antibacterial action in clays and assist in the elucidation of the mechanisms involved.

2.
World Archaeol ; 50(3): 418-433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31058277

RESUMEN

Western biomedicine has only partially developed its own tradition of mineral medicinals (lithotherapeutics), at least compared to botanicals. This is perhaps because these minerals were site-specific, and fundamental information associated with the empirical processes of mineral extraction, beneficiation, storage, trade and preparation was not widely available. In other words, there are many and serious breaks in the multi-link chain from mine to apothecary. This long-term investigation aims to rebuild this chain, on a mineral-by-mineral basis, by pulling together the extant documentary record, material culture, mineralogy, geochemistry and microbial ecology, as well as by testing against known pathogens as an indicator of their antimicrobial activity. Critical to understanding the nature and efficacy of lithotherapeutics is the recognition that these materials need to be investigated simultaneously at two levels: the empirical (ancient sources and practices); and the biomedical (application of physical and biological sciences). Both approaches require the same starting point, namely the field (mine or quarry) and in particular the 'point of contact' (relationship) between minerals and their microbiome.

3.
Sci Total Environ ; 409(24): 5432-43, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21962595

RESUMEN

The method used by archaeologists for excavation and recording of the stratigraphic evidence, within trenches with or without archaeological remains, can potentially be useful to contaminated land consultants (CLCs). The implementation of archaeological practice in contaminated land assessments (CLAs) is not meant to be an exercise in data overkill; neither should it increase costs. Rather, we suggest, that if the excavation and recording, by a trained archaeologist, of the stratigraphy is followed by in-situ chemical characterisation then it is possible that much uncertainty associated with current field sampling practices, may be removed. This is because built into the chemical stratigraphy is the temporal and spatial relationship between different parts of the site reflecting the logic behind the distribution of contamination. An archaeological recording with chemical stratigraphy approach to sampling may possibly provide 'one method fits all' for potentially contaminated land sites (CLSs), just as archaeological characterisation of the stratigraphic record provides 'one method fits all' for all archaeological sites irrespective of period (prehistoric to modern) or type (rural, urban or industrial). We also suggest that there may be practical and financial benefits to be gained by pulling together expertise and resources stemming from different disciplines, not simply at the assessment phase, but also subsequent phases, in contaminated land improvement.


Asunto(s)
Arqueología/métodos , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Suelo/química , Ciudades , Industrias , Eliminación de Residuos , Escocia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA