Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(10): 103801, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518334

RESUMEN

Programmable photonic circuits (PPCs) have garnered substantial interest for their potential in facilitating deep learning accelerations and universal quantum computations. Although photonic computation using PPCs offers ultrafast operation, energy-efficient matrix calculations, and room-temperature quantum states, its poor scalability hinders integration. This challenge arises from the temporally one-shot operation of propagating light in conventional PPCs, resulting in a light-speed increase in device footprints. Here we propose the concept of programmable photonic time circuits, utilizing time-cycle-based computations analogous to gate cycling in the von Neumann architecture and quantum computation. Our building block is a reconfigurable SU(2) time gate, consisting of two resonators with tunable resonances, and coupled via time-coded dual-channel gauge fields. We demonstrate universal U(N) operations with high fidelity using an assembly of the SU(2) time gates, substantially improving scalability from O(N^{2}) to O(N) in terms of both the footprint and the number of gates. This result paves the way for PPC implementation in very large-scale integration.

2.
Opt Express ; 30(16): 28301-28311, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299029

RESUMEN

The effect of deep subwavelength disorder in one-dimensional dichromic multilayer films on the optical transmission, localization length, and Goos-Hänchen shift around the critical angle is analyzed using sets of disordered multilayer films with different degrees of order metric τ. For each Gaussian-perturbed multilayer film designed by a Metropolis algorithm targeting the predetermined order metric τ, the numerically obtained localization length and transmission show excellent agreement with the recent theoretical analysis developed for disordered multilayer films, further revealing τ-dependence of the Goos-Hänchen shift across the critical angle. Emphasizing the role of deep subwavelength structures in disorder-induced transmission enhancement, our result thus paves the way toward the inverse design of a deep subwavelength disordered structural landscape for the targeted order metric τ or abnormal optical responses - including the Goos-Hänchen shift.

3.
Ther Clin Risk Manag ; 18: 31-45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35027830

RESUMEN

BACKGROUND: The prognostic implications of the admission cTnI level and D2B time combined on in-hospital and 1-year heart failure (HF) and mortality in STEMI patients undergoing a primary percutaneous coronary intervention (PCI) are remain uncertain. METHODS AND RESULTS: We divided the consecutive 1485 STEMI patients who underwent PCI from January 2015 to October 2019 at our hospital into three groups based on their admission cTnI levels: normal group (<0.1 ng/mL), middle group (0.1 to less than 3 ng/mL), and high group (≥3 ng/mL) and into two groups by their D2B times: >90 min (>90-D2B) and ≤90 min (≤90-D2B). During the in-hospital and 1-year follow-up periods, the incidence of composite clinical events increased significantly with the increase in the admission cTnI level (p < 0.05). In-hospital, the composite rate of death and HF events was significantly higher in the >90-D2B group compared to the ≤90-D2B group (p = 0.006), but its influence disappeared in the 1-year follow-up (p > 0.05). A multivariable logistic analysis revealed that, in the ≤90-D2B group, with the exception of the cTnI ≥3 ng/mL patients, the cTnI level had no effect on in-hospital or 1-year outcomes; in >90-D2B group, cTnI ≥3ng/mL increased outcomes in both periods. CONCLUSION: High cTnI levels (≥3 ng/mL) on admission are independent of the D2B time for predicting in-hospital and 1-year cardiac events in STEMI patients undergoing PCI.

4.
Exp Anim ; 71(2): 193-203, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34853239

RESUMEN

Granulocyte colony-stimulating factor (G-CSF) has been reported to exert a protective effect against secondary brain damage, but the underlying mechanisms remain unknown. We explored the ability of G-CSF to protect the brain from injury in a rat autologous blood-induced model of intracerebral hemorrhage (ICH), with a special focus on the anti-inflammation effect. An ICH was induced in 8-week-old male rats by an infusion of autologous blood, and the rats were then randomly assigned to five treatment groups: sham, ICH, and ICH+ low-dose (25 µg/kg), middle-dose (50 µg/kg), and high-dose (75 µg/kg) G-CSF. We then evaluated the levels of brain inflammation-related genes and proteins. The levels of tumor-necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) mRNA increased between days 1 and 14 post-ICH, with the highest expression on day 3. These changes were rectified by G-CSF in a dose-dependent manner. At day 3 post-injury, an elevation of the nuclear factor-kappa B (NF-κB) p65 protein level and a reduction of the inhibitor of NF-κB alpha (IκBα) protein level were observed; G-CSF treatment exerted a beneficial effect on both protein expressions. The expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins were increased; these changes were rectified by the highest dose of G-CSF. The brain-protecting effects of G-CSF are likely to be attributable, at least in part, to attenuation of the TNF-α, IL-6, iNOS, and COX-2 expressions induced by NF-κB activation in the brain tissues of this autologous blood-induced ICH rat model.


Asunto(s)
Lesiones Encefálicas , FN-kappa B , Animales , Masculino , Ratas , Hemorragia Cerebral/tratamiento farmacológico , Ciclooxigenasa 2/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Inflamación/tratamiento farmacológico , Interleucina-6 , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Toxicol In Vitro ; 70: 105052, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33188878

RESUMEN

Calycosin is one of the main ingredients extracted from the Chinese medical herb, Radix astragali (RA). It has been shown to inhibit cell proliferation and induce apoptosis in several cancer cell lines, but the underlying mechanism remains unclear. The effects of calycosin on the proliferation and apoptosis of hepatocellular carcinoma (HCC) cells, as well as its mechanism, were investigated in this study. Cell Counting Kit-8 assay results suggested that calycosin had anti-proliferation effects on HCC in dose- and time-dependent manners, and had less cytotoxicity in normal cells. Hoechst/PI double staining and flow cytometry results showed cellular morphological changes and apoptosis after treatment of HepG2 cells with calycosin. The western blot assay showed calycosin decreased the expression of Bcl-2 and increased the expression of Bax, caspase-3, and PARP. Calycosin induced the activation of MAPK, STAT3, NF-κB, apoptosis-related proteins, and induced cell cycle arrest in the G0/G1 phase by regulating AKT. In addition, calycosin reduced the expression of TGF-ß1, SMAD2/3, SLUG, and vimentin. Furthermore, phosphorylation, apoptosis, and cell migration induced by calycosin were mediated by the production of reactive oxygen species. These events could be inhibited by pretreatment with N-acetyl-L-cysteine. Calycosin resisted HCC by activating ROS-mediated MAPK, STAT3, and NF-κB signaling pathways.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Isoflavonas/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
6.
Nat Commun ; 11(1): 4842, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973187

RESUMEN

The vast amount of design freedom in disordered systems expands the parameter space for signal processing. However, this large degree of freedom has hindered the deterministic design of disordered systems for target functionalities. Here, we employ a machine learning approach for predicting and designing wave-matter interactions in disordered structures, thereby identifying scale-free properties for waves. To abstract and map the features of wave behaviors and disordered structures, we develop disorder-to-localization and localization-to-disorder convolutional neural networks, each of which enables the instantaneous prediction of wave localization in disordered structures and the instantaneous generation of disordered structures from given localizations. We demonstrate that the structural properties of the network architectures lead to the identification of scale-free disordered structures having heavy-tailed distributions, thus achieving multiple orders of magnitude improvement in robustness to accidental defects. Our results verify the critical role of neural network structures in determining machine-learning-generated real-space structures and their defect immunity.

7.
Phys Rev Lett ; 125(5): 053901, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794858

RESUMEN

Non-Euclidean geometry, discovered by negating Euclid's parallel postulate, has been of considerable interest in mathematics and related fields for the description of geographical coordinates, Internet infrastructures, and the general theory of relativity. Notably, an infinite number of regular tessellations in hyperbolic geometry-hyperbolic lattices-are expected to extend Euclidean Bravais lattices and the consequent wave phenomena to non-Euclidean geometry. However, topological states of matter in hyperbolic lattices have yet to be reported. Here we investigate topological phenomena in hyperbolic geometry, exploring how the quantized curvature and edge dominance of the geometry affect topological phases. We report a recipe for the construction of a Euclidean photonic platform that inherits the topological band properties of a hyperbolic lattice under a uniform, pseudospin-dependent magnetic field, realizing a non-Euclidean analog of the quantum spin Hall effect. For hyperbolic lattices with different quantized curvatures, we examine the topological protection of helical edge states and generalize Hofstadter's butterfly, by employing two empirical parameters that measure the edge confinement and defect immunity. We demonstrate that the proposed platforms exhibit the unique spectral-magnetic sensitivity of topological immunity in highly curved hyperbolic planes. Our approach is applicable to general non-Euclidean geometry and enables the exploitation of infinite lattice degrees of freedom for band theory.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 393(10): 1987-1999, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31956937

RESUMEN

Liquiritin (LIQ), a major constituent of Glycyrrhiza Radix, exhibits various pharmacological activities. In this study, to explore the potential anti-cancer effects and its underlying molecular mechanisms of LIQ in hepatocellular carcinoma (HCC) cells. LIQ significantly decreased viability and induced apoptosis in HepG2 cells by decreasing mitochondrial membrane potential and regulating Bcl-2 family proteins, cytochrome c, cle-caspase-3, and cle-PARP. The cell cycle analysis and western blot analysis revealed that LIQ induced G2/M phase arrest through increased expression of p21 and decreased levels of p27, cyclin B, and CDK1/2. The flow cytometry and western blot analysis also suggested that LIQ promoted the accumulation of ROS in HepG2 cells and up-regulated the phosphorylation expression levels of p38 kinase, c-Jun N-terminal kinase (JNK), and inhibitor of NF-κB (IκB-α); the phosphorylation levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), signal transducer activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) were down-regulated. However, these effects were reversed by N-acetyl-L-cysteine (NAC), MAPK, and AKT inhibitors. The findings demonstrated that LIQ induced cell cycle arrest and apoptosis via the ROS-mediated MAPK/AKT/NF-κB signaling pathway in HepG2 cells, and the LIQ may serve as a potential therapeutic agent for the treatment of human HCC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Flavanonas/farmacología , Glucósidos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Flavanonas/uso terapéutico , Glucósidos/uso terapéutico , Glycyrrhiza , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Oncol Rep ; 43(1): 229-239, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661146

RESUMEN

Long non­coding RNAs (lncRNAs) are considered to be important regulators in breast cancer. In the present study, the potential mechanisms and functional roles of lncRNA PSMG3­antisense (AS)1 were investigated in vivo and in vitro. The relative expression levels of lncRNA PSMG3­AS1 and microRNA (miR)­143­3p were determined using reverse­transcription quantitative PCR. The protein expression levels of collagen type 1 alpha 1 (COL1A1) and proliferating cell nuclear antigen (PCNA) were obtained using western blot analysis. Bioinformatics analysis was used to identify the relationship between PSMG3­AS1, miR­143­3p and COL1A1. Colony forming and Cell Counting Kit­8 assays were used to detect cell proliferation. Transwell and wound­healing assays were used to determine cell migration. The results of the present study demonstrated that PSMG3­AS1 expression was increased in breast cancer tumor tissues and cell lines, and that of miR­143­3p was decreased. Knockdown of PSMG3­AS1 increased the level of miR­143­3p expression, which led to the mitigation of proliferation and migration capacity in breast carcinoma cells. Additionally, PSMG3­AS1 knockdown was demonstrated to reduce the mRNA and protein expression levels of COL1A1. miR­143­3p mimic transfection reduced proliferation and migration in MDA­MB­231 and MCF­7 cell lines. Furthermore, miR­143­3p inhibition significantly increased the proliferation and migration of breast cancer cells compared with the negative control group. The mRNA and protein expression levels of PCNA were reduced in the MCF­7 cell line when transfected with miR­143­3p mimics and si­PSMG3­AS1. However, PCNA expression was increased in cells transfected with a miR­143­3p inhibitor. In conclusion, the results of the present study identified a novel lncRNA PSMG3­AS1, which serves as a sponge for miR­143­3p in the pathogenesis of breast cancer. PSMG3­AS1 may be used as a potential therapeutic target gene in breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cadena alfa 1 del Colágeno Tipo I , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células MCF-7 , Persona de Mediana Edad
10.
Artif Cells Nanomed Biotechnol ; 48(1): 84-95, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31852250

RESUMEN

Cytisine is a natural product isolated from plants and is a member of the quinolizidine alkaloid family. This study aims to investigate the effect of cytisine in human lung cancer. Cell viability was determined using the CCK-8 assay, and the results showed that cytisine inhibited the growth of lung cancer cell lines. The apoptotic effects were evaluated using flow cytometry, and the results showed that cytisine induced mitochondrial-dependent apoptosis through loss of the mitochondrial membrane potential; increased expression of BAD, cleaved caspase-3, and cleaved-PARP; and decreased expression levels of Bcl-2, pro-caspase-3, and pro-PARP. In addition, cytisine caused G2/M phase cell cycle arrest that was associated with inhibiting the AKT signalling pathway. During apoptosis, cytisine increased the phosphorylation levels of JNK, p38, and I-κB, and decreased the phosphorylation levels of ERK, STAT3, and NF-κB. Furthermore, cytisine treatment led to the generation of ROS, and the NAC attenuated cytisine-induced apoptosis. In vivo, cytisine administration significantly inhibited the lung cancer cell xenograft tumorigenesis. In conclusion, cytisine plays a critical role in suppressing the carcinogenesis of lung cancer cells through cell cycle arrest and induction of mitochondria-mediated apoptosis, suggesting that it may be a promising candidate for the treatment of human lung cancer.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Neoplasias Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Azocinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolizinas/farmacología , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Adv Sci (Weinh) ; 6(15): 1900771, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31406676

RESUMEN

As an elementary processor of neural networks, a neuron performs exotic dynamic functions, such as bifurcation, repetitive firing, and oscillation quenching. To achieve ultrafast neuromorphic signal processing, the realization of photonic equivalents to neuronal dynamic functions has attracted considerable attention. However, despite the nonconservative nature of neurons due to energy exchange between intra- and extra-cellular regions through ion channels, the critical role of non-Hermitian physics in the photonic analogy of a neuron has been neglected. Here, a neuromorphic non-Hermitian photonic system ruled by parity-time symmetry is presented. For a photonic platform that induces the competition between saturable gain and loss channels, dynamical phases are classified with respect to parity-time symmetry and stability. In each phase, unique oscillation quenching functions and nonreciprocal oscillations of light fields are revealed as photonic equivalents of neuronal dynamic functions. The proposed photonic system for neuronal functionalities will become a fundamental building block for light-based neural signal processing.

12.
Mol Med Rep ; 20(3): 2571-2582, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31322207

RESUMEN

1,4­Naphthoquinone derivatives have superior anticancer effects, but their use has been severely limited in clinical practice due to adverse side effects. To reduce the side effects and extend the anticancer effects of 1,4­naphthoquinone derivatives, 2­(butane­1­sulfinyl)­1,4­naphthoquinone (BQ) and 2­(octane­1­sulfinyl)­1,4­naphthoquinone (OQ) were synthesized, and their anticancer activities were investigated. The anti­proliferation effects, determined by MTT assays, showed that BQ and OQ significantly inhibited the viability of gastric cancer cells and had no significant cytotoxic effect on normal cell lines. The apoptotic effect was determined by flow cytometry, and the results showed that BQ and OQ induced cell apoptosis by regulating the mitochondrial pathway and cell cycle arrest at the G2/M phase via inhibition of the Akt signaling pathway in AGS cells. Furthermore, BQ and OQ significantly increased the levels of reactive oxygen species (ROS) and this effect was blocked by the ROS scavenger NAC in AGS cells. BQ and OQ induced apoptosis by upregulating the protein expression of p38 and JNK and downregulating the levels of ERK and STAT3. Furthermore, expression levels of these proteins were also blocked after NAC treatment. These results demonstrated that BQ and OQ induced apoptosis and cell cycle arrest at the G2/M phase in AGS cells by stimulating ROS generation, which caused subsequent activation of MAPK, Akt and STAT3 signaling pathways. Thus, BQ and OQ may serve as potential therapeutic agents for the treatment of human gastric cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Naftoquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Naftoquinonas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
13.
J Chemother ; 31(4): 214-226, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31074342

RESUMEN

The 1,4-naphthoquinones and their derivatives have garnered great interest due to their antitumor pharmacological properties in various cancers; however, their clinical application is limited by side effects. In this study, to reduce side effects and improve therapeutic efficacy, a novel 1,4-naphthoquinone derivative-2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone (MPTDMNQ) was synthesized. We investigated the effects and underlying mechanisms of MPTDMNQ on cell viability, apoptosis, and reactive oxygen species (ROS) generation in human gastric cancer cells. Our results showed that MPTDMNQ decreased cell viability in nine human gastric cancer cell lines. MPTDMNQ significantly induced apoptosis accompanied by the accumulation of ROS in GC cells. However, pre-treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the MPTDMNQ-induced apoptosis. Moreover, MPTDMNQ decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3); and increased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 kinase. However, phosphorylation was inhibited by NAC and a mitogen-activated protein kinase (MAPK) inhibitor. These findings showed that MPTDMNQ induced AGS cell apoptosis via ROS-mediated MAPK and STAT3 signaling pathways. Thus, MPTDMNQ may be a promising candidate for treating gastric cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Naftoquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/metabolismo
14.
Chem Biol Interact ; 304: 148-157, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30871965

RESUMEN

1,4-Naphthoquinone compounds are a class of organic compounds derived from naphthalene. They exert a wide variety of biological effects, but when used as anticancer drugs, have varying levels of side effects. In the present study, in order to reduce toxicity and improve the antitumor activity, we synthesized two novel 1,4-naphthoquinone derivatives, 2-(butane-1-sulfinyl)-1,4-naphthoquinone (BSQ) and 2-(octane-1-sulfinyl)-1,4-naphthoquinone (OSQ). We investigated the antitumor effects of BSQ and OSQ in human lung cancer cells and the underlying molecular mechanisms of these effects, focusing on the relationship between these compounds and reactive oxygen species (ROS) production. MTT assay and trypan blue exclusion assay results showed that BSQ and OSQ had significant cytotoxic effects in human lung cancer cells. Flow cytometry results indicated that the number of apoptotic cells and the intracellular ROS levels significantly increased after treatment with BSQ and OSQ. However, cell apoptosis was inhibited by pretreatment with the ROS scavenger N-acetyl-l-cysteine (NAC). Western blotting results showed that BSQ and OSQ increased the expression levels of p-p38 kinase and p-c-Jun N-terminal kinase (p-JNK), and decreased the expression levels of p-extracellular signal-regulated kinase (p-ERK), p-protein kinase B (p-Akt), and p-signal transducer and activator of transcription-3 (p-STAT3). These phenomena were blocked by mitogen-activated protein kinase (MAPK) inhibitors, Akt inhibitors and NAC. In conclusion, BSQ and OSQ induce human lung cancer A549 cell apoptosis by ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Therefore, BSQ and OSQ may be therapeutic potential agents for the treatment of human lung cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Naftalenos/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Células A549 , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Naftalenos/farmacología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas
15.
Bioorg Med Chem ; 27(8): 1577-1587, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30846406

RESUMEN

The natural compound 1,4-naphthoquinone has potent anti-tumor activity. However, the clinical application of 1,4-naphthoquinone and its derivatives has been limited by their side effects. In this study, we attempted to reduce the toxicity of 1,4-naphthoquinone by synthesizing two derivatives: 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (ENDMNQ). Then we evaluated the cytotoxicity and molecular mechanisms of these compounds in lung cancer cells. EPDMNQ and ENDMNQ significantly inhibited the viabilities of three lung cancer cell lines and induced A549 cell cycle arrest at the G1 phase. In addition, they induced the apoptosis of A549 lung cancer cells by increasing the phosphorylation of p38 and c-Jun N-terminal kinase (p-JNK), and decreasing the phosphorylation of extracellular signal-related kinase (p-ERK), protein kinase B (Akt), and signal transducer and activator of transcription 3 (STAT3). Furthermore, they increased reactive oxygen species (ROS) levels in A549 cells; however, pretreatment with the ROS inhibitor N-acetyl-l-cysteine significantly inhibited EPDMNQ- and ENDMNQ-mediated apoptosis and reversed apoptotic proteins expression. In conclusion, EPDMNQ and ENDMNQ induced G1 phase cell cycle arrest and apoptosis in A549 cells via the ROS-mediated activation of mitogen activated protein kinase (MAPK), Akt and STAT3 signaling pathways.


Asunto(s)
Apoptosis , Diseño de Fármacos , Naftoquinonas/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Naftoquinonas/farmacología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Drug Dev Res ; 80(4): 461-470, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30698296

RESUMEN

Isoliquiritigenin (ISL), a natural flavonoid isolated from plant licorice, has various pharmacological properties, including anticancer, anti-inflammatory, and antiviral effects. However, the underlying mechanisms and signaling pathways of ISL in human hepatocellular carcinoma (HCC) cells remain unknown. In this study, we evaluated the effects of ISL on the apoptosis of human HCC cells with a focus on reactive oxygen species (ROS) production. Our results showed that ISL exhibited cytotoxic effects on two human liver cancer cells in a dose-dependent manner. ISL significantly induced mitochondrial-related apoptosis and cell cycle arrest at the G2/M phase, which was accompanied by ROS accumulation in HepG2 cells. However, pretreatment with an ROS scavenger, N-acetyl-l-cysteine (NAC), inhibited ISL-induced apoptosis. In addition, ISL increased the phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 kinase and inhibitor of NF-κB (IκB), and decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa B (NF-κB), these effects were blocked by NAC and mitogen-activated protein kinase (MAPK) inhibitors. Taken together, the findings of this study indicate that ISL induced HepG2 cell apoptosis via ROS-mediated MAPK, STAT3, and NF-κB signaling pathways. Therefore, ISL may be a potential treatment for human HCC, as well as other cancer types.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Chalconas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo
17.
Int J Mol Med ; 43(2): 1067-1075, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30535477

RESUMEN

The present study investigated the mechanisms of apoptosis induced by cryptotanshinone (CT) in human rheumatoid arthritis fibroblast­like synoviocytes (RA­FLSs). Cell Counting kit­8 assay was performed to determine the cytotoxic effects of CT in human RA­FLSs, including primary RA­FLS, HFLS­RA and MH7A cells, and in HFLS cells derived from normal synovial tissue. Annexin V­FITC/PI staining was used to detect the apoptotic effects of CT in HFLS­RA and MH7A cells. Flow cytometry was performed to detect the apoptotic and reactive oxygen species (ROS) levels induced by CT in HFLS­RA cells. Western blotting was used to assess the expression levels of proteins associated with apoptosis and with the mitogen­activated protein kinase (MAPK), protein kinase B (Akt), and signal transducer and activator of transcription­3 (STAT3) signaling pathways. The results demonstrated that CT treatment significantly suppressed HFLS­RA and MH7A cell growth, whereas no clear inhibitory effect was observed in normal HFLS cells. CT exposure downregulated the expression levels of B­cell lymphoma 2 (Bcl­2), p­Akt, p­extracellular signal­related kinase and p­STAT3, while it upregulated the expression levels of Bcl­2­associated death promoter (Bad), caspase­3, poly (ADP­ribose) polymerase (PARP), p­p38 and p­c­Jun N­terminal kinase. Following ROS scavenging, the CT­induced apoptosis and altered expression levels of Bcl­2, Bad, cleaved caspase­3 and cleaved PARP were restored. Furthermore, the Akt, MAPK and STAT3 signaling pathways were regulated by intracellular ROS. These results suggest that ROS­mediated Akt, MAPK and STAT3 signaling pathways serve important roles in the CT­induced apoptosis of RA­FLSs.


Asunto(s)
Apoptosis/efectos de los fármacos , Artritis Reumatoide/metabolismo , Fenantrenos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Biomarcadores , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo
18.
Mol Med Rep ; 19(3): 1654-1664, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30592276

RESUMEN

Derivatives of 1,4­naphthoquinone have excellent anti­cancer effects, but their use has been greatly limited due to their serious side effects. To develop compounds with decreased side effects and improved anti­cancer activity, two novel types of 1,4­naphthoquinone derivatives, 2,3­dihydro­2,3­epoxy­2­propylsulfonyl­5,8­dimethoxy­1,4­naphthoquinone (EPDMNQ) and 2,3­dihydro­2,3­epoxy­2­nonylsulfonyl­5,8­dimethoxy­1,4­naphthoquinone (ENDMNQ) were synthesized and their anti­tumor activities were investigated. The effects of EPDMNQ and ENDMNQ on cell viability, apoptosis and accumulation of reactive oxygen species (ROS) in liver cancer cells were determined by MTT cell viability assay and flow cytometry. The expression levels of mitochondrial, mitogen activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathway­associated proteins in Hep3B liver cancer cells were analyzed by western blot analysis. The results demonstrated that EPDMNQ and ENDMNQ inhibited the proliferation of liver cancer Hep3B, HepG2, and Huh7 cell lines but not that of normal liver L­02, normal lung IMR­90 and stomach GES­1 cell lines. The number of apoptotic cells and ROS levels were significantly increased following treatment with EPDMNQ and ENDMNQ, and these effects were blocked by the ROS inhibitor N­acetyl­L­cysteine (NAC) in Hep3B cells. EPDMNQ and ENDMNQ induced apoptosis by upregulating the protein expression of p38 MAPK and c­Jun N­terminal kinase and downregulating extracellular signal­regulated kinase and STAT3; these effects were inhibited by NAC. The results of the present study demonstrated that EPDMNQ and ENDMNQ induced apoptosis through ROS­modulated MAPK and STAT3 signaling pathways in Hep3B cells. Therefore, these novel 1,4­naphthoquinone derivatives may be useful as anticancer agents for the treatment of liver cancer.


Asunto(s)
Neoplasias Hepáticas/tratamiento farmacológico , Naftoquinonas/farmacología , Factor de Transcripción STAT3/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo
19.
Drug Dev Res ; 79(6): 295-306, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30222185

RESUMEN

Hit, Lead & Candidate Discovery It is reported that 1,4-naphthoquinones and their derivatives have potent antitumor activity in various cancers, although their clinical application is limited by observed side effects. To improve the therapeutic efficacy of naphthoquinones in the treatment of cancer and to reduce side effects, we synthesized a novel naphthoquinone derivative, 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone (NTDMNQ). In this study, we explored the effects of NTDMNQ on apoptosis in gastric cancer cells with a focus on reactive oxygen species (ROS) production. Our results demonstrated that NTDMNQ exhibited the cytotoxic effects on gastric cancer cells in a dose-dependent manner. NTDMNQ significantly induced mitochondrial-related apoptosis in AGS cells and increased the accumulation of ROS. However, pre-treatment with N-acetyl-L-cysteine (NAC), an ROS scavenger, inhibited the NTDMNQ-induced apoptosis. In addition, NTDMNQ increased the phosphorylation of p38 kinase and c-Jun N-terminal kinase (JNK) and decreased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and Signal Transducer and Activator of Transcription 3 (STAT3); these effects were blocked by mitogen-activated protein kinase (MAPK) inhibitor and NAC. Taken together, the present findings indicate that NTDMNQ-induced gastric cancer cell apoptosis via ROS-mediated regulation of the MAPK, Akt, and STAT3 signaling pathways. Therefore, NTDMNQ may be a potential treatment for gastric cancer as well as other tumor types.


Asunto(s)
1-Naftilamina/análogos & derivados , Apoptosis/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , 1-Naftilamina/administración & dosificación , 1-Naftilamina/efectos adversos , 1-Naftilamina/síntesis química , Células Cultivadas , Humanos , Sistema de Señalización de MAP Quinasas , Especies Reactivas de Oxígeno , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
20.
Med Sci Monit ; 24: 3710-3719, 2018 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-29860266

RESUMEN

BACKGROUND Quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) exhibits potentially useful anticancer effects by inducing apoptosis in several types of cancer, but its underlying mechanism of action remains unknown. The present study examined the effects of quinalizarin on the induction of cell cycle arrest, apoptosis, the generation of reactive oxygen species (ROS), other underlying mechanisms, and its role in modifying colorectal cancer cell lines. MATERIAL AND METHODS The MTT assay was used to evaluate the viability of SW480 and HCT-116 cells that had been treated with quinalizarin and 5-fluorouracil (5-FU). Cell cycle arrest and apoptosis were analyzed by flow cytometry. Western blotting was used to investigate the mitochondrial pathway; Akt, MAPK, and STAT3 signaling pathways were also investigated. The relationship between ROS generation and apoptosis was analyzed by flow cytometry and western blotting. RESULTS The results indicated that quinalizarin significantly inhibits the viability of SW480 and HCT-116 cells in a dose-dependent manner. Quinalizarin induced SW480 cell cycle arrest at G2/M by regulating cyclin B1 and CDK1/2. The apoptosis-related protein expression levels of p-p53, Bad, cleaved caspase-3, cleaved PARP and p-JNK were increased in quinalizarin-treated cells, while protein expression levels Bcl-2, p-Akt, p-ERK, and p-STAT3 were decreased. Quinalizarin induced apoptosis in colorectal cancer cells by regulating MAPK and STAT3 signaling pathways via ROS generation. CONCLUSIONS Quinalizarin induces apoptosis via ROS-mediated MAPK/STAT3 signaling pathways.


Asunto(s)
Antraquinonas/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Proteína Oncogénica v-akt/efectos de los fármacos , Proteína Oncogénica v-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...