Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 13(1): 2000, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737651

RESUMEN

Oral squamous cell carcinoma (OSCC) has high recurrence and mortality rates despite advances in diagnosis and treatment. Therefore, it is necessary to identify new biomarkers for early detection, efficient monitoring, and prognosis prediction. Since microRNA (miRNA) is stable and detectable in serum, it has been reported to inform the diagnosis and monitor disease progression through liquid biopsy. In this study, a circulating specific miRNA panel in OSCC patients was developed, and its usefulness as a dynamic monitor was validated. Small RNAs were extracted from the serum of OSCC patients (n = 4) and normal controls (n = 6) and profiled using next-generation sequencing. NGS identified 42 differentially expressed miRNAs (DEmiRNAs) in serum between patients with OSCC and healthy controls, with threefold differences (p < 0.05). Combining the 42 DEmiRNAs and The Cancer Genome Atlas (TCGA) databases OSCC cohort, 9 overlapping DEmiRNAs were screened out. Finally, 4 significantly up-regulated miRNAs (miR-92a-3p, miR-92b-3p, miR-320c and miR-629-5p) were identified from OSCC patients via validation in the Chungnam National University Hospital cohort. Application of the specific miRNA panel for distinguishing OSCC patients from healthy controls produced specificity and sensitivity of 97.8 and 74%, respectively. In addition, the serum levels of these 4 miRNAs significantly decreased after complete surgical resection and increased after recurrence. We suggest that circulating 4-miRNA panel might be promising non-invasive predictors for diagnosing and monitoring the progression of patients with OSCC.


Asunto(s)
MicroARN Circulante , MicroARNs , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Biomarcadores de Tumor/genética , MicroARN Circulante/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
2.
Clin Exp Otorhinolaryngol ; 16(2): 184-197, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36822197

RESUMEN

OBJECTIVES: The mitochondrial ribosomal protein L14 (MRPL14) is encoded by a nuclear gene and participates in mitochondrial protein translation. In this study, we aimed to investigate the role of MRPL14 in thyroid cancer. METHODS: We investigated the association between MRPL14 expression and clinicopathological features using The Cancer Genome Atlas (TCGA) and Chungnam National University Hospital (CNUH) databases. Functional studies of MRPL14, including proliferation, migration, invasion, mitochondrial oxidative phosphorylation and reactive oxygen species (ROS) production, were performed in papillary thyroid cancer (PTC) cell lines (B-CPAP and KTC-1). RESULTS: Based on the TCGA dataset, PTC tissues lost mitochondrial integrity and showed dysregulated expression of overall mitoribosomal proteins (MRPs) compared with normal thyroid tissues. Of 78 MRPs, MRPL14 was highly expressed in thyroid cancer tissues. MRPL14 overexpression was significantly associated with advanced tumor stage, extrathyroidal extension, and lymph node metastasis. MRPL14 increased cell proliferation of thyroid cancer and promoted cell migration via epithelial-mesenchymal transition-related proteins. Moreover, MRPL14 knockdown reduced the expression of oxidative phosphorylation complex IV (MTCO1) and increased the accumulation of ROS. Cotreatment with a ROS scavenger restored cell proliferation and migration, which had been reduced by MRPL14 knockdown, implying that ROS functions as a key regulator of the oncogenic effects of MRPL14 in thyroid cancer cells. CONCLUSION: Our findings indicate that MRPL14 may promote cell growth, migration, and invasion by modulating ROS in thyroid cancer cells.

3.
Oral Oncol ; 134: 106115, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36108524

RESUMEN

OBJECTIVE: This study aimed to determine whether completion thyroidectomy is necessary based on long-term follow-up oncological results according to various clinical and pathological characteristics of patients with papillary thyroid carcinoma (PTC) who underwent lobectomy. MATERIALS AND METHODS: We enrolled 1815 patients with PTC who underwent thyroid lobectomy from January 2003 to December 2014. Various clinical and pathological characteristics were reviewed retrospectively, and clinicopathologic characteristics and recurrence rates were analyzed. RESULTS: Eighty-two (4.5%) patients showed locoregional recurrence during the average 10.2-year follow-up period. There was no significant difference in tumor size, multifocality, lymphovascular invasion (LVI), microscopic or strap muscle-extrathyroidal extension, and central neck lymph node (LN) micrometastasis between the recurrence and non-recurrence groups. The gross strap muscle-extrathyroidal extension group was associated with older age (p < 0.001), larger tumor size (p < 0.001), more capsular invasion (p < 0.001), and more LVI (p < 0.001) than the negative extrathyroidal extension group; there was no significant difference in recurrence between the groups (p = 0.096). Patients with five or more central LN micrometastases were associated with younger age (p = 0.006), larger tumor size (p = 0.04), and presence of LVI (p = 0.033) than patients with less than five central LN metastases; there was no significant difference in recurrence between the groups (p = 0.867). All patients with recurrence were cured through reoperation after recurrence was confirmed. CONCLUSION: After thyroid lobectomy, PTC patients with multifocality, LVI, extrathyroidal extension to the strap muscles, or five or more central LN micrometastases may not require immediate completion thyroidectomy.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Carcinoma Papilar/patología , Carcinoma Papilar/cirugía , Humanos , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Músculos/patología , Micrometástasis de Neoplasia , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Tiroidectomía/métodos
4.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077112

RESUMEN

Various enzymes in the one-carbon metabolic pathway are closely related to the development of tumors, and they can all be potential targets for cancer therapy. Serine hydroxymethyltransferase2 (SHMT2), a key metabolic enzyme, is very important for the proliferation and growth of cancer cells. However, the function and mechanism of SHMT2 in head and neck cancer (HNC) are not clear. An analysis of The Cancer Genome Atlas (TCGA) data showed that the expression of SHMT2 was higher in tumor tissue than in normal tissue, and its expression was significantly associated with male sex, aggressive histological grade, lymph node metastasis, distant metastasis, advanced TNM stage, and lymphovascular invasion in HNC. SHMT2 knockdown in FADU and SNU1041 cell lines significantly inhibited cell proliferation, colony formation, migration, and invasion. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using TCGA data revealed that SHMT2 was closely related to cancer stem cell regulation and maintenance. Furthermore, we found that silencing SHMT2 inhibited the expression of stemness markers and tumor spheroid formation compared with a control group. On the contrary, stemness markers were significantly increased after SHMT2 overexpression in HEP-2 cells. Interestingly, we found that knocking down SHMT2 reduced the expression of genes related to the Notch and Wnt pathways. Finally, silencing SHMT2 significantly reduced tumor growth and decreased stemness markers in a xenograft model. Taken together, our study suggests that targeting SHMT2 may play an important role in inhibiting HNC progression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Proliferación Celular/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Masculino , Células Madre Neoplásicas/metabolismo , Serina/metabolismo
5.
Transl Res ; 247: 58-78, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35462077

RESUMEN

Claudin-1 (CLDN1), a major component of tight junction complexes in the epithelium, maintains cellular polarity, and plays a critical role in cell-to-cell communication as well as epithelial cell homeostasis. Although the role of CLDN1 has been widely studied in cancer, its role in the progression and the exact regulatory mechanisms, remain controversial. Using next-generation sequencing, we first analyzed the expression profiles of tumor/non-tumor paired tissue in patients with head and neck squamous cell carcinoma (HNSC) from public and local cohorts and found out that CLDN1 is upregulated in tumors compared to normal tissues. Next, its correlation with lymph node metastasis and poor prognosis was validated in the retrospective cohort, which collectively suggests CLDN1 as an oncogene in HNSC. As expected, the knockdown of CLDN1 inhibited invasive phenotypes by downregulating epithelial-to-mesenchymal transition (EMT) in vitro. To ascertain the regulatory mechanism of CLDN1 in HNSC analysis of GO term enrichment, KEGG pathways, and curated gene sets were used. As a result, CLDN1 was negatively associated with AMP-activated protein kinase (AMPK) and positively associated with transforming growth factor-ß (TGF-ß) signaling. In vitro mechanistic assay showed that CLDN1 inhibited AMPK phosphorylation by regulating AMPK upstream phosphatases, which led to inhibition of Smad2 activity. Intriguingly, the invasive phenotype of cancer cells increased by CLDN1 overexpression was rescued by AMPK activation, indicating a role of the CLDN1/AMPK/TGF-ß/EMT cascade in HNSC. Consistently in vivo, CLDN1 suppression significantly inhibited the tumor growth, with elevated AMPK expression, suggesting the novel observation of oncogenic CLDN1-AMPK signaling in HNSC.


Asunto(s)
Claudina-1 , Transición Epitelial-Mesenquimal , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Claudina-1/genética , Claudina-1/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Estudios Retrospectivos , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factor de Crecimiento Transformador beta/metabolismo
6.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681812

RESUMEN

Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-ß (TGF-ß) superfamily, has been reported to be overexpressed in different kinds of cancer types. However, the function and mechanism of GDF15 in head and neck cancer (HNC) remains unclear. The Cancer Genome Atlas (TCGA) data show that the expression of GDF15 is significantly associated with tumor AJCC stage, lymph vascular invasion and tumor grade in HNC. In this study, we confirmed that knockdown of GDF15 attenuated: cell proliferation, migration and invasion via regulation of EMT through a canonical pathway; SMAD2/3 and noncanonical pathways; PI3K/AKT and MEK/ERK in HNC cell lines. Furthermore, we found that early growth response 1 (EGR1) was a transcription factor of GDF15. Interestingly, we also demonstrated that GDF15 could regulate the expression of EGR1, which meant a positive feedback loop occurred between these two factors. Moreover, combined inhibition of both GDF15 and EGR1 in a HNC mouse xenograft model showed significantly decreased tumor volume compared to inhibition of EGR1 or GDF15 alone. Our study showed that the GDF15-EGR1 signaling axis may be a good target in HNC patients.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factor 15 de Diferenciación de Crecimiento/genética , Neoplasias de Cabeza y Cuello/patología , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Transición Epitelial-Mesenquimal/genética , Retroalimentación Fisiológica/fisiología , Regulación Neoplásica de la Expresión Génica , Factor 15 de Diferenciación de Crecimiento/fisiología , Células HaCaT , Neoplasias de Cabeza y Cuello/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/genética , Células Tumorales Cultivadas
7.
Phytomedicine ; 92: 153758, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34592487

RESUMEN

BACKGROUND: Despite recent advances in understanding the complex immunologic dysfunction in the tumor microenvironment (TME), fewer than 20% of patients with head and neck squamous cell carcinoma (HNSCC) respond to immune checkpoint blockade (ICB). Thus, it is important to understand how inhibitory IC receptors maintain the suppressed dysfunctional TME, and to develop more effective combination immunotherapy. This study evaluated the immune-modulating effects of Curcumin, which has well-established anti-cancer and chemopreventive properties, and its long-term safety as a phytochemical drug. METHODS: We carried out the western blot and small interfering RNA (siRNA) transfection assay to evaluate the effects of Curcumin on IC ligands and IC ligands function in HNSCC. Through T-cell cytotoxicity assay and measurements of cytokine secretion, we assessed the effects of combination of Curcumin with programmed death-ligand 1 (PD-L1) Ab on cancer cell killing. Flow cytometry were used to analyze the effects of Curcumin on the expression of programmed cell death protein 1 (PD-1) and T-cell immunoglobulin and mucin-domain3 (TIM-3) on CD4, CD8 and Treg. Immunofluorescence, immunohistochemistry and western blot were used to detecte the cytokine (IFN-γ, Granzyme B), IC receptors (PD-1 and TIM-3) and its ligands (PD-L1, PD-L2, Galectin-9) in xenograft mouse model and 4-nitroquinoline-1-oxide (4-NQO) oral cancer model. RESULTS: We found that Curcumin decreased the expression of IC ligands such as PD-L1, PD-L2, and Galectin-9 in HNSCC, leading to regulation of epithelial-to-mesenchymal transition-associated tumor invasion. Curcumin also effectively restored the ability of CD8+ cytotoxic T cells to lyse cancer cells. To evaluate the effect of Curcumin on the TME further, the 4-NQO oral cancer model was used. Curcumin increased T-cell proliferation, tumor-infiltrating lymphocytes (TILs), and effector cytokines, and decreased the expression of PD-1, TIM-3, suppressive IC receptors and their ligands (PD-L1, PD-L2, and Galectin-9) in the TME, implying reinvigoration of the exhausted CD8+ T cells. In addition, Curcumin inhibited expression of CD4+CD25+FoxP3+ Treg cells as well as PD-1 and TIM-3. CONCLUSIONS: These results show that Curcumin reinvigorates defective T cells via multiple (PD-1 and TIM-3) and multi-level (IC receptors and its ligands) IC axis suppression, thus providing a rationale to combine Curcumin with conventional targeted therapy or ICB as a multi-faceted approach for treating patients with HNSCC.


Asunto(s)
Curcumina , Neoplasias de Cabeza y Cuello , Animales , Linfocitos T CD8-positivos , Curcumina/farmacología , Humanos , Inhibidores de Puntos de Control Inmunológico , Linfocitos Infiltrantes de Tumor , Ratones , Microambiente Tumoral
8.
Oxid Med Cell Longev ; 2021: 9951712, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306318

RESUMEN

Mitochondrial targeted therapy is a next-generation therapeutic approach for cancer that is refractory to conventional treatments. Mitochondrial damage caused by the excessive accumulation of reactive oxygen species (ROS) is a principle of mitochondrial targeted therapy. ROS in nonthermal plasma-activated media (NTPAM) are known to mediate anticancer effects in various cancers including head and neck cancer (HNC). However, the signaling mechanism of HNC cell death via NTPAM-induced ROS has not been fully elucidated. This study evaluated the anticancer effects of NTPAM in HNC and investigated the mechanism using transcriptomic analysis. The viability of HNC cells decreased after NTPAM treatment due to enhanced apoptosis. A human fibroblast cell line and three HNC cell lines were profiled by RNA sequencing. In total, 1 610 differentially expressed genes were identified. Pathway analysis showed that activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were upstream regulators. Mitochondrial damage was induced by NTPAM, which was associated with enhancements of mitochondrial ROS (mtROS) and ATF4/CHOP regulation. These results suggest that NTPAM induces HNC cell death through the upregulation of ATF4/CHOP activity by damaging mitochondria via excessive mtROS accumulation, similar to mitochondrial targeted therapy.


Asunto(s)
Neoplasias de Cabeza y Cuello/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Mitocondrias/efectos de los fármacos , Transcriptoma/fisiología
9.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477921

RESUMEN

(1) Background: Nonthermal plasma (NTP) induces cell death in various types of cancer cells, providing a promising alternative treatment strategy. Although recent studies have identified new mechanisms of NTP in several cancers, the molecular mechanisms underlying its therapeutic effect on thyroid cancer (THCA) have not been elucidated. (2) Methods: To investigate the mechanism of NTP-induced cell death, THCA cell lines were treated with NTP-activated medium -(NTPAM), and gene expression profiles were evaluated using RNA sequencing. (3) Results: NTPAM upregulated the gene expression of early growth response 1 (EGR1). NTPAM-induced THCA cell death was enhanced by EGR1 overexpression, whereas EGR1 small interfering RNA had the opposite effect. NTPAM-derived reactive oxygen species (ROS) affected EGR1 expression and apoptotic cell death in THCA. NTPAM also induced the gene expression of growth arrest and regulation of DNA damage-inducible 45α (GADD45A) gene, and EGR1 regulated GADD45A through direct binding to its promoter. In xenograft in vivo tumor models, NTPAM inhibited tumor progression of THCA by increasing EGR1 levels. (4) Conclusions: Our findings suggest that NTPAM induces apoptotic cell death in THCA through a novel mechanism by which NTPAM-induced ROS activates EGR1/GADD45α signaling. Furthermore, our data provide evidence that the regulation of the EGR1/GADD45α axis can be a novel strategy for the treatment of THCA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...