Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 31(6): 866-885.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718796

RESUMEN

Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.


Asunto(s)
Axones , Cuerpo Calloso , Proteínas de Unión al ADN , Organoides , Factores de Transcripción , Humanos , Cuerpo Calloso/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Organoides/metabolismo , Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Transcripción Genética , Neuronas/metabolismo
2.
Nat Methods ; 20(12): 2034-2047, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38052989

RESUMEN

Ventral midbrain dopaminergic neurons project to the striatum as well as the cortex and are involved in movement control and reward-related cognition. In Parkinson's disease, nigrostriatal midbrain dopaminergic neurons degenerate and cause typical Parkinson's disease motor-related impairments, while the dysfunction of mesocorticolimbic midbrain dopaminergic neurons is implicated in addiction and neuropsychiatric disorders. Study of the development and selective neurodegeneration of the human dopaminergic system, however, has been limited due to the lack of an appropriate model and access to human material. Here, we have developed a human in vitro model that recapitulates key aspects of dopaminergic innervation of the striatum and cortex. These spatially arranged ventral midbrain-striatum-cortical organoids (MISCOs) can be used to study dopaminergic neuron maturation, innervation and function with implications for cell therapy and addiction research. We detail protocols for growing ventral midbrain, striatal and cortical organoids and describe how they fuse in a linear manner when placed in custom embedding molds. We report the formation of functional long-range dopaminergic connections to striatal and cortical tissues in MISCOs, and show that injected, ventral midbrain-patterned progenitors can mature and innervate the tissue. Using these assembloids, we examine dopaminergic circuit perturbations and show that chronic cocaine treatment causes long-lasting morphological, functional and transcriptional changes that persist upon drug withdrawal. Thus, our method opens new avenues to investigate human dopaminergic cell transplantation and circuitry reconstruction as well as the effect of drugs on the human dopaminergic system.


Asunto(s)
Enfermedad de Parkinson , Humanos , Mesencéfalo/anatomía & histología , Mesencéfalo/fisiología , Dopamina , Neuronas Dopaminérgicas , Cuerpo Estriado
3.
Nat Commun ; 13(1): 895, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173170

RESUMEN

Habituation is a form of learning during which animals stop responding to repetitive stimuli, and deficits in habituation are characteristic of several psychiatric disorders. Due to technical challenges, the brain-wide networks mediating habituation are poorly understood. Here we report brain-wide calcium imaging during larval zebrafish habituation to repeated visual looming stimuli. We show that different functional categories of loom-sensitive neurons are located in characteristic locations throughout the brain, and that both the functional properties of their networks and the resulting behavior can be modulated by stimulus saliency and timing. Using graph theory, we identify a visual circuit that habituates minimally, a moderately habituating midbrain population proposed to mediate the sensorimotor transformation, and downstream circuit elements responsible for higher order representations and the delivery of behavior. Zebrafish larvae carrying a mutation in the fmr1 gene have a systematic shift toward sustained premotor activity in this network, and show slower behavioral habituation.


Asunto(s)
Habituación Psicofisiológica/fisiología , Mesencéfalo/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Ondas Encefálicas/fisiología , Calcio/análisis , Larva/fisiología , Neuronas/fisiología , Proteínas de Unión al ARN/genética , Reflejo de Sobresalto/fisiología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
4.
Front Neural Circuits ; 15: 748535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744637

RESUMEN

Animals from insects to humans perform visual escape behavior in response to looming stimuli, and these responses habituate if looms are presented repeatedly without consequence. While the basic visual processing and motor pathways involved in this behavior have been described, many of the nuances of predator perception and sensorimotor gating have not. Here, we have performed both behavioral analyses and brain-wide cellular-resolution calcium imaging in larval zebrafish while presenting them with visual loom stimuli or stimuli that selectively deliver either the movement or the dimming properties of full loom stimuli. Behaviorally, we find that, while responses to repeated loom stimuli habituate, no such habituation occurs when repeated movement stimuli (in the absence of luminance changes) are presented. Dim stimuli seldom elicit escape responses, and therefore cannot habituate. Neither repeated movement stimuli nor repeated dimming stimuli habituate the responses to subsequent full loom stimuli, suggesting that full looms are required for habituation. Our calcium imaging reveals that motion-sensitive neurons are abundant in the brain, that dim-sensitive neurons are present but more rare, and that neurons responsive to both stimuli (and to full loom stimuli) are concentrated in the tectum. Neurons selective to full loom stimuli (but not to movement or dimming) were not evident. Finally, we explored whether movement- or dim-sensitive neurons have characteristic response profiles during habituation to full looms. Such functional links between baseline responsiveness and habituation rate could suggest a specific role in the brain-wide habituation network, but no such relationships were found in our data. Overall, our results suggest that, while both movement- and dim-sensitive neurons contribute to predator escape behavior, neither plays a specific role in brain-wide visual habituation networks or in behavioral habituation.


Asunto(s)
Visión Ocular , Pez Cebra , Animales , Humanos , Larva , Neuronas Motoras , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...