Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Antioxidants (Basel) ; 13(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38790642

RESUMEN

The paracrine signaling pathways for the crosstalk between pericytes and endothelial cells are essential for the coordination of cell responses to challenges such as hypoxia in both healthy individuals and pathological conditions. Ischemia-reperfusion injury (IRI), one of the causes of cellular dysfunction and death, is associated with increased expression of genes involved in cellular adaptation to a hypoxic environment. Hypoxic inducible factors (HIFs) have a central role in the response to processes initiated by IRI not only linked to erythropoietin production but also because of their participation in inflammation, angiogenesis, metabolic adaptation, and fibrosis. While pericytes have an essential physiological function in erythropoietin production, a lesser-known role of HIF stabilization during IRI is that pericytes' HIF expression could influence vascular remodeling, cell loss and organ fibrosis. Better knowledge of mechanisms that control functions and consequences of HIF stabilization in pericytes beyond erythropoietin production is advisable for the development of therapeutic strategies to influence disease progression and improve treatments. Thus, in this review, we discuss the dual roles-for good or bad-of HIF stabilization during IRI, focusing on pericytes, and consequences in particular for the kidneys.

2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894823

RESUMEN

The current view of the mitochondrial respiratory chain complexes I, III and IV foresees the occurrence of their assembly in supercomplexes, providing additional functional properties when compared with randomly colliding isolated complexes. According to the plasticity model, the two structural states of the respiratory chain may interconvert, influenced by the intracellular prevailing conditions. In previous studies, we suggested the mitochondrial membrane potential as a factor for controlling their dynamic balance. Here, we investigated if and how the cAMP/PKA-mediated signalling influences the aggregation state of the respiratory complexes. An analysis of the inhibitory titration profiles of the endogenous oxygen consumption rates in intact HepG2 cells with specific inhibitors of the respiratory complexes was performed to quantify, in the framework of the metabolic flux theory, the corresponding control coefficients. The attained results, pharmacologically inhibiting either PKA or sAC, indicated that the reversible phosphorylation of the respiratory chain complexes/supercomplexes influenced their assembly state in response to the membrane potential. This conclusion was supported by the scrutiny of the available structure of the CI/CIII2/CIV respirasome, enabling us to map several PKA-targeted serine residues exposed to the matrix side of the complexes I, III and IV at the contact interfaces of the three complexes.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Transporte de Electrón , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Fosforilación
3.
BMC Complement Med Ther ; 23(1): 311, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684643

RESUMEN

BACKGROUND: Pomegranate is known for its beneficial properties due to its high content in antioxidants and might constitute a natural option for preventing and treatment of different pathologies including cancer. Since mitochondria are involved in tumorigenesis through ROS production and modulation of oxidative metabolism, we investigated the biological effects of pomegranate on cellular redox state, proliferation and metabolism in the breast cancer cell line MDA-MB-231 (MDA). METHODS: MDA were treated for 24 h with graded concentration of filtered Pomegranate juice (PJ) and tested for metabolic Flux Analysis with XFe96 Extracellular Flux Analyzer, for proliferation using the xCELLigence System Real-Time Cell Analyzer and for intracellular ROS content by Confocal Microscopy Imaging. RESULTS: Cells-treatment with freshly prepared pomegranate juice (PJ) resulted in a significant reduction of the intracellular ROS content already at the lower concentration of PJ tested. Additionally, it enhanced mitochondria respiration, and decreased glycolysis at high concentrations, inhibiting at the same time cell proliferation. As pomegranate is a seasonal fruit, assessment of optimum storage conditions preserving its bio-active properties was investigated. Our results indicated that storage conditions under controlled atmosphere for 30 days was able to enhance mitochondrial respiration at the same extent than freshly extracted PJ. Conversely, freezing procedure, though retaining the antioxidant and cell-growth inhibitory property, elicited an opposite effect on the metabolic profile as compared with fresh extract. CONCLUSION: Overall, the results of our study, on the one hand, confirms the preventive/therapeutic potential of PJ, as well as of its post-harvested processing, for cancer management. On the other hand, it highlights the intrinsic difficulties in attaining mechanistic insights when a multiplicity of effects is elicited by a crude mixture of bio-active compounds.


Asunto(s)
Granada (Fruta) , Células MDA-MB-231 , Especies Reactivas de Oxígeno , Oxidación-Reducción , Proliferación Celular , Antioxidantes/farmacología , Metaboloma , Mezclas Complejas
4.
Stem Cell Res Ther ; 14(1): 215, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608350

RESUMEN

BACKGROUND: Redox signaling and energy metabolism are known to be involved in controlling the balance between self-renewal and proliferation/differentiation of stem cells. In this study we investigated metabolic and redox changes occurring during in vitro human dental pulp stem cells (hDPSCs) osteoblastic (OB) differentiation and tested on them the impact of the reactive oxygen species (ROS) signaling. METHODS: hDPSCs were isolated from dental pulp and subjected to alkaline phosphatase and alizarin red staining, q-RT-PCR, and western blotting analysis of differentiation markers to assess achievement of osteogenic/odontogenic differentiation. Moreover, a combination of metabolic flux analysis and confocal cyto-imaging was used to profile the metabolic phenotype and to evaluate the redox tone of hDPSCs. RESULTS: In differentiating hDPSCs we observed the down-regulation of the mitochondrial respiratory chain complexes expression since the early phase of the process, confirmed by metabolic flux analysis, and a reduction of the basal intracellular peroxide level in its later phase. In addition, dampened glycolysis was observed, thereby indicating a lower energy-generating phenotype in differentiating hDPSCs. Treatment with the ROS scavenger Trolox, applied in the early-middle phases of the process, markedly delayed OB differentiation of hDPSCs assessed as ALP activity, Runx2 expression, mineralization capacity, expression of stemness and osteoblast marker genes (Nanog, Lin28, Dspp, Ocn) and activation of ERK1/2. In addition, the antioxidant partly prevented the inhibitory effect on cell metabolism observed following osteogenic induction. CONCLUSIONS: Altogether these results provided evidence that redox signaling, likely mediated by peroxide species, influenced the stepwise osteogenic expansion/differentiation of hDPSCs and contributed to shape its accompanying metabolic phenotype changes thus improving their efficiency in bone regeneration and repair.


Asunto(s)
Pulpa Dental , Osteogénesis , Humanos , Especies Reactivas de Oxígeno , Regeneración Ósea , Metabolismo Energético , Oxidación-Reducción , Niacinamida , Fosfatasa Alcalina/genética
5.
Stem Cell Res Ther ; 13(1): 209, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35598009

RESUMEN

BACKGROUND: The metabolic phenotype of stem cells is increasingly recognized as a hallmark of their pluripotency with mitochondrial and oxygen-related metabolism playing a not completely defined role in this context. In a previous study, we reported the ectopic expression of myoglobin (MB) in bone marrow-derived hematopoietic stem/progenitor cells. Here, we have extended the analysis to mesenchymal stem cells (MSCs) isolated from different tissues. METHODS: MSCs were isolated from human placental membrane, mammary adipose tissue and dental pulp and subjected to RT-PCR, Western blotting and mass spectrometry to investigate the expression of MB. A combination of metabolic flux analysis and cyto-imaging was used to profile the metabolic phenotype and the mitochondria dynamics in the different MSCs. RESULTS: As for the hematopoietic stem/progenitor cells, the expression of Mb was largely driven by an alternative transcript with the protein occurring both in the monomer and in the dimer forms as confirmed by mass spectrometry analysis. Comparing the metabolic fluxes between neonatal placental membrane-derived and adult mammary adipose tissue-derived MSCs, we showed a significantly more active bioenergetics profile in the former that correlated with a larger co-localization of myoglobin with the mitochondrial compartment. Differences in the structure of the mitochondrial network as well as in the expression of factors controlling the organelle dynamics were also observed between neonatal and adult mesenchymal stem cells. Finally, the expression of myoglobin was found to be strongly reduced following osteogenic differentiation of dental pulp-derived MSCs, while it was upregulated following reprogramming of human fibroblasts to induce pluripotent stem cells. CONCLUSIONS: Ectopic expression of myoglobin in tissues other than muscle raises the question of understanding its function therein. Properties in addition to the canonical oxygen storage/delivery have been uncovered. Finding of Mb expressed via an alternative gene transcript in the context of different stem cells with metabolic phenotypes, its loss during differentiation and recovery in iPSCs suggest a hitherto unappreciated role of Mb in controlling the balance between aerobic metabolism and pluripotency. Understanding how Mb contributes through modulation of the mitochondrial physiology to the stem cell biology paves the way to novel perspectives in regenerative medicine as well as in cancer stem cell therapy.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Diferenciación Celular , Femenino , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Mioglobina/genética , Mioglobina/metabolismo , Osteogénesis/genética , Oxígeno/metabolismo , Placenta/metabolismo , Embarazo
6.
Genes (Basel) ; 12(9)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34573276

RESUMEN

Mitochondria are dynamic organelles undergoing continuous fusion and fission with Drp1, encoded by the DNM1L gene, required for mitochondrial fragmentation. DNM1L dominant pathogenic variants lead to progressive neurological disorders with early exitus. Herein we report on the case of a boy affected by epileptic encephalopathy carrying two heterozygous variants (in cis) of the DNM1L gene: a pathogenic variant (PV) c.1085G>A (p.Gly362Asp) accompanied with a variant of unknown significance (VUS) c.1535T>C (p.Ile512Thr). Amplicon sequencing of the mother's DNA revealed the presence of the PV and VUS in 5% of cells, with the remaining cells presenting only VUS. Functional investigations performed on the patient and his mother's cells unveiled altered mitochondrial respiratory chain activities, network architecture and Ca2+ homeostasis as compared with healthy unrelated subjects' samples. Modelling Drp1 harbouring the two variants, separately or in combination, resulted in structural changes as compared with Wt protein. Considering the clinical history of the mother, PV transmission by a maternal germline mosaicism mechanism is proposed. Altered Drp1 function leads to changes in the mitochondrial structure and bioenergetics as well as in Ca2+ homeostasis. The novel VUS might be a modifier that synergistically worsens the phenotype when associated with the PV.


Asunto(s)
Dinaminas/genética , Mutación de Línea Germinal , Herencia Materna , Enfermedades Mitocondriales/genética , Mosaicismo , Espasmos Infantiles/genética , Adulto , Alelos , Calcio/metabolismo , Células Cultivadas , Niño , Dinaminas/química , Dinaminas/metabolismo , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Dinámicas Mitocondriales , Mutación Missense , Conformación Proteica , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patología
7.
Diagnostics (Basel) ; 11(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34441434

RESUMEN

Identification of markers predicting disease outcome is a major clinical issue for non-muscle invasive bladder cancer (NMIBC). The present study aimed to determine the role of the mitochondrial proteins Mitofusin-2 (Mfn2) and caseinolytic protease P (ClpP) in predicting the outcome of NMIBC. The study population consisted of patients scheduled for transurethral resection of bladder tumor upon the clinical diagnosis of bladder cancer (BC). Samples of the main bladder tumor and healthy-looking bladder wall from patients classified as NMIBC were tested for Mfn2 and ClpP. The expression levels of these proteins were correlated to disease recurrence, progression. Mfn2 and ClpP expression levels were significantly higher in lesional than in non-lesional tissue. Low-risk NMIBC had significantly higher Mfn2 expression levels and significantly lower ClpP expression levels than high-risk NMIBC; there were no differences in non-lesional levels of the two proteins. Lesional Mfn2 expression levels were significantly lower in patients who progressed whereas ClpP levels had no impact on any survival outcome. Multivariable analysis adjusting for the EORTC scores showed that Mfn2 downregulation was significantly associated with disease progression. In conclusion, Mfn2 and ClpP proteins were found to be overexpressed in BC as compared to non-lesional bladder tissue and Mfn2 expression predicted disease progression.

8.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806300

RESUMEN

Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.


Asunto(s)
Comunicación Celular/fisiología , Neoplasias/terapia , Microambiente Tumoral/fisiología , Adenosina Trifosfato/metabolismo , Animales , Comunicación Celular/inmunología , Conexinas/fisiología , Citocinas/inmunología , Transición Epitelial-Mesenquimal/fisiología , Uniones Comunicantes/fisiología , Humanos , Inmunidad Innata , Inflamasomas/inmunología , Modelos Biológicos , Invasividad Neoplásica/patología , Invasividad Neoplásica/fisiopatología , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/fisiopatología , Neoplasias/patología , Neoplasias/fisiopatología , Escape del Tumor , Microambiente Tumoral/inmunología
9.
Biomedicines ; 10(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35052705

RESUMEN

Defining the metabolic phenotypes of cancer-initiating cells or cancer stem cells and of their differentiated counterparts might provide fundamental knowledge for improving or developing more effective therapies. In this context we extensively characterized the metabolic profiles of two osteosarcoma-derived cell lines, the 3AB-OS cancer stem cells and the parental MG-63 cells. To this aim Seahorse methodology-based metabolic flux analysis under a variety of conditions complemented with real time monitoring of cell growth by impedentiometric technique and confocal imaging were carried out. The results attained by selective substrate deprivation or metabolic pathway inhibition clearly show reliance of 3AB-OS on glycolysis and of MG-63 on glutamine oxidation. Treatment of the osteosarcoma cell lines with cisplatin resulted in additive inhibitory effects in MG-63 cells depleted of glutamine whereas it antagonized under selective withdrawal of glucose in 3AB-OS cells thereby manifesting a paradoxical pro-survival, cell-cycle arrest in S phase and antioxidant outcome. All together the results of this study highlight that the efficacy of specific metabolite starvation combined with chemotherapeutic drugs depends on the cancer compartment and suggest cautions in using it as a generalizable curative strategy.

10.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118815, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32763264

RESUMEN

Regulation of metabolism is emerging as a major output of circadian clock circuitry in mammals. Accordingly, mitochondrial oxidative metabolism undergoes both in vivo and in vitro daily oscillatory activities. In a previous study we showed that both glycolysis and mitochondrial oxygen consumption display a similar time-resolved rhythmic activity in synchronized HepG2 cell cultures, which translates in overall bioenergetic changes as here documented by measurement of the ATP level. Treatment of synchronized cells with specific metabolic inhibitors unveiled pyruvate as a major source of reducing equivalents to the respiratory chain with its oxidation driven by the rhythmic (de)phosphorylation of pyruvate dehydrogenase. Further investigation enabled to causally link the autonomous cadenced mitochondrial respiration to a synchronous increase of the mitochondrial Ca2+. The rhythmic change of the mitochondrial respiration was dampened by inhibitors of the mitochondrial Ca2+ uniporter as well as of the ryanodine receptor Ca2+ channel or the ADPR cyclase, indicating that the mitochondrial Ca2+ influx originated from the ER store, likely at contact sites with the mitochondrial compartment. Notably, blockage of the mitochondrial Ca2+ influx resulted in deregulation of the expression of canonical clock genes such as BMALl1, CLOCK, NR1D1. All together our findings unveil a hitherto unexplored function of Ca2+-mediated signaling in time keeping the mitochondrial metabolism and in its feed-back modulation of the circadian clockwork.


Asunto(s)
Proteínas CLOCK/genética , Relojes Circadianos/genética , Mitocondrias/genética , Fosforilación Oxidativa , ADP-Ribosil Ciclasa/genética , Factores de Transcripción ARNTL/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Metabolismo Energético/genética , Células Hep G2 , Humanos , Mitocondrias/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Oxígeno/metabolismo , Consumo de Oxígeno/genética , Piruvatos/metabolismo
11.
Cells ; 9(7)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668765

RESUMEN

KMT2D encodes a methyltransferase responsible for histone 3 lysine 4 (H3K4) mono-/di-methylation, an epigenetic mark correlated with active transcription. Here, we tested the hypothesis that KMT2D pathogenic loss-of-function variants, which causes the Kabuki syndrome type 1, could affect the mitochondrial metabolic profile. By using Seahorse technology, we showed a significant reduction of the mitochondrial oxygen consumption rate as well as a reduction of the glycolytic flux in both Kmt2d knockout MEFs and skin fibroblasts of Kabuki patients harboring heterozygous KMT2D pathogenic variants. Mass-spectrometry analysis of intermediate metabolites confirmed alterations in the glycolytic and TCA cycle pathways. The observed metabolic phenotype was accompanied by a significant increase in the production of reactive oxygen species. Measurements of the specific activities of the mitochondrial respiratory chain complexes revealed significant inhibition of CI (NADH dehydrogenase) and CIV (cytochrome c oxidase); this result was further supported by a decrease in the protein content of both complexes. Finally, we unveiled an impaired oxidation of glucose and larger reliance on long-chain fatty acids oxidation. Altogether, our findings clearly indicate a rewiring of the mitochondrial metabolic phenotype in the KMT2D-null or loss-of-function context that might contribute to the development of Kabuki disease, and represents metabolic reprogramming as a potential new therapeutic approach.


Asunto(s)
Proteínas de Unión al ADN/genética , N-Metiltransferasa de Histona-Lisina/genética , Mutación con Pérdida de Función/genética , Mitocondrias/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Neoplasias/genética , Animales , Respiración de la Célula/genética , Regulación hacia Abajo/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Glucosa/metabolismo , Glucólisis/genética , Homeostasis , Humanos , Potencial de la Membrana Mitocondrial , Análisis de Flujos Metabólicos , Ratones , Modelos Biológicos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Especificidad por Sustrato
12.
Pharmaceuticals (Basel) ; 13(6)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498452

RESUMEN

BACKGROUND: Tetracyclines' use in intensive animal farming has raised some concerns regarding the biosafety for humans. Increasing evidences have revealed the presence of these drugs in processed animal by-products, such as bone, throughout the food chain. A potential off-target of tetracyclines is the bacterial-like mitochondrial translational machinery, thereby causing proteostatic alterations in mitochondrial DNA-encoded components of the oxidative phosphorylation system. METHODS: The Seahorse methodology, confocal microscopy imaging of mitochondrial potential and reactive oxygen species, and q-RT-PCR analysis of the expression of genes involved in mitochondrial biogenesis and mitophagy were carried out on human lymphoblast derived K562 cell line challenged with bone powder derived from chicken treated with or without oxytetracycline and pure oxytetracycline. RESULTS: A complex dose-dependent profile was attained with a low dosage of bone powder extracts causing a metabolic adaptation hallmarked by stimulation of the mitochondrial respiration and enhanced expression of mitochondriogenic factors in particular in cells challenged with oxytetracycline-free bone extract. Conversely, a higher dosage of bone powder extracts, regardless of their source, caused a progressive inhibition of mitochondrial respiration and glycolysis, ultimately leading to cell death. No significant effects of the pure oxytetracycline were observed. CONCLUSION: Bone powder, regardless of chicken treatment, contains and releases factors/chemicals responsible for the observed effects on energy metabolism. Quantitative differential effects appear to depend on biochemical alterations in the bone matrix caused by antibiotics rather than antibiotics themselves.

13.
EMBO Rep ; 21(6): e48942, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32424995

RESUMEN

Cultured mouse embryonic stem cells are a heterogeneous population with diverse differentiation potential. In particular, the subpopulation marked by Zscan4 expression has high stem cell potency and shares with 2 cell stage preimplantation embryos both genetic and epigenetic mechanisms that orchestrate zygotic genome activation. Although embryonic de novo genome activation is known to rely on metabolites, a more extensive metabolic characterization is missing. Here we analyze the Zscan4+ mouse stem cell metabolic phenotype associated with pluripotency maintenance and cell reprogramming. We show that Zscan4+ cells have an oxidative and adaptable metabolism, which, on one hand, fuels a high bioenergetic demand and, on the other hand, provides intermediate metabolites for epigenetic reprogramming. Our findings enhance our understanding of the metastable Zscan4+ stem cell state with potential applications in regenerative medicine.


Asunto(s)
Células Madre Embrionarias de Ratones , Factores de Transcripción , Animales , Blastocisto/metabolismo , Metaboloma , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo
14.
Sci Rep ; 10(1): 2287, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041983

RESUMEN

Nandrolone is a testosterone analogue with anabolic properties commonly abused worldwide, recently utilized also as therapeutic agent in chronic diseases, cancer included. Here we investigated the impact of nandrolone on the metabolic phenotype in HepG2 cell line. The results attained show that pharmacological dosage of nandrolone, slowing cell growth, repressed mitochondrial respiration, inhibited the respiratory chain complexes I and III and enhanced mitochondrial reactive oxygen species (ROS) production. Intriguingly, nandrolone caused a significant increase of stemness-markers in both 2D and 3D cultures, which resulted to be CxIII-ROS dependent. Notably, nandrolone negatively affected differentiation both in healthy hematopoietic and mesenchymal stem cells. Finally, nandrolone administration in mice confirmed the up-regulation of stemness-markers in liver, spleen and kidney. Our observations show, for the first time, that chronic administration of nandrolone, favoring maintenance of stem cells in different tissues would represent a precondition that, in addition to multiple hits, might enhance risk of carcinogenesis raising warnings about its abuse and therapeutic utilization.


Asunto(s)
Anabolizantes/efectos adversos , Carcinogénesis/inducido químicamente , Mitocondrias/efectos de los fármacos , Nandrolona/efectos adversos , Células Madre Neoplásicas/efectos de los fármacos , Anabolizantes/administración & dosificación , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/fisiología , Células Hep G2 , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Hígado/citología , Hígado/efectos de los fármacos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Ratones , Mitocondrias/metabolismo , Modelos Animales , Nandrolona/administración & dosificación , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Esferoides Celulares , Bazo/citología , Bazo/efectos de los fármacos , Ensayo de Tumor de Célula Madre , Regulación hacia Arriba/efectos de los fármacos
15.
Org Chem Front ; 6(11): 1762-1774, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871685

RESUMEN

The bloom-forming cyanobacteria Trichodesmium sp. have been recently shown to produce some of the chlorinated peptides/polyketides previously isolated from the marine sponge Smenospongia aurea. A comparative analysis of extracts from S. aurea and Trichodesmium sp. was performed using tandem mass spectrometry-based molecular networking. The analysis, specifically targeted to chlorinated metabolites, showed that many of them are common to the two organisms, but also that some general differences exist between the two metabolomes. Following this analysis, six new chlorinated metabolites were isolated and their structures elucidated: four polyketides, smenolactones A-D (1-4) from S. aurea, and two new conulothiazole analogues, isoconulothiazole B (5) and conulothiazole C (6) from Trichodesmium sp. The absolute configuration of smenolactone C (3) was determined by taking advantage of the conformational rigidity of open 1,3-disubstituted alkyl chains. The antiproliferative activity of smenolactones was evaluated on three tumor cell lines, and they were active at low-micromolar or sub-micromolar concentrations.

16.
Mar Drugs ; 17(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817358

RESUMEN

Several marine natural linear prenylquinones/hydroquinones have been identified as anticancer and antimutagenic agents. Structure-activity relationship studies on natural compounds and their synthetic analogs demonstrated that these effects depend on the length of the prenyl side chain and on the type and position of the substituent groups in the quinone moiety. Aiming to broaden the knowledge of the underlying mechanism of the antiproliferative effect of these prenylated compounds, herein we report the synthesis of two quinones 4 and 5 and of their corresponding dioxothiazine fused quinones 6 and 7 inspired to the marine natural product aplidinone A (1), a geranylquinone featuring the 1,1-dioxo-1,4-thiazine ring isolated from the ascidian Aplidium conicum. The potential effects on viability and proliferation in three different human cancer cell lines, breast adenocarcinoma (MCF-7), pancreas adenocarcinoma (Bx-PC3) and bone osteosarcoma (MG-63), were investigated. The methoxylated geranylquinone 5 exerted the highest antiproliferative effect exhibiting a comparable toxicity in all three cell lines analyzed. Interestingly, a deeper investigation has highlighted a cytostatic effect of quinone 5 referable to a G0/G1 cell-cycle arrest in BxPC-3 cells after 24 h treatment.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Terpenos/farmacología , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Neoplasias Óseas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Osteosarcoma/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Relación Estructura-Actividad , Terpenos/síntesis química , Terpenos/química
17.
Oxid Med Cell Longev ; 2019: 8201079, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827705

RESUMEN

An extensive body of literature describes anticancer property of dichloroacetate (DCA), but its effective clinical administration in cancer therapy is still limited to clinical trials. The occurrence of side effects such as neurotoxicity as well as the suspicion of DCA carcinogenicity still restricts the clinical use of DCA. However, in the last years, the number of reports supporting DCA employment against cancer increased also because of the great interest in targeting metabolism of tumour cells. Dissecting DCA mechanism of action helped to understand the bases of its selective efficacy against cancer cells. A successful coadministration of DCA with conventional chemotherapy, radiotherapy, other drugs, or natural compounds has been tested in several cancer models. New drug delivery systems and multiaction compounds containing DCA and other drugs seem to ameliorate bioavailability and appear more efficient thanks to a synergistic action of multiple agents. The spread of reports supporting the efficiency of DCA in cancer therapy has prompted additional studies that let to find other potential molecular targets of DCA. Interestingly, DCA could significantly affect cancer stem cell fraction and contribute to cancer eradication. Collectively, these findings provide a strong rationale towards novel clinical translational studies of DCA in cancer therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Ácido Dicloroacético/uso terapéutico , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Animales , Humanos , Neoplasias/patología
18.
Cells ; 8(8)2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416286

RESUMEN

If occupational tumors are excluded, cancer causes are largely unknown. Therefore, it appeared useful to work out a theory explaining the complexity of this disease. More than fifty years ago the first demonstration that cells communicate with each other by exchanging ions or small molecules through the participation of connexins (Cxs) forming Gap Junctions (GJs) occurred. Then the involvement of GJ Intercellular Communication (GJIC) in numerous physiological cellular functions, especially in proliferation control, was proven and accounts for the growing attention elicited in the field of carcinogenesis. The aim of the present paper is to verify and discuss the role of Cxs, GJs, and GJIC in cancer hallmarks, pointing on the different involved mechanisms in the context of the multi-step theory of carcinogenesis. Functional GJIC acts both as a tumor suppressor and as a tumor enhancer in the metastatic stage. On the contrary, lost or non-functional GJs allow the uncontrolled proliferation of stem/progenitor initiated cells. Thus, GJIC plays a key role in many biological phenomena or epiphenomena related to cancer. Depending on this complexity, GJIC can be considered a tumor suppressor in controlling cell proliferation or a cancer ally, with possible preventive or therapeutic implications in both cases.


Asunto(s)
Carcinogénesis , Comunicación Celular , Conexinas/fisiología , Uniones Comunicantes/fisiología , Neoplasias/patología , Animales , Línea Celular Tumoral , Humanos , Ratones , Neoplasias/metabolismo , Células Madre/patología , Microambiente Tumoral
19.
Stem Cell Res Ther ; 10(1): 171, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31196186

RESUMEN

BACKGROUND: Administration of the iron chelator deferasirox (DFX) in transfusion-dependent patients occasionally results in haematopoiesis recovery by a mechanism remaining elusive. This study aimed to investigate at a molecular level a general mechanism underlying DFX beneficial effects on haematopoiesis, both in healthy and pathological conditions. METHODS: Human healthy haematopoietic stem/progenitor cells (HS/PCs) and three leukemia cell lines were treated with DFX. N-Acetyl cysteine (NAC) and fludarabine were added as antioxidant and STAT1 inhibitor, respectively. In vitro colony-forming assays were assessed both in healthy and in leukemia cells. Intracellular and mitochondrial reactive oxygen species (ROS) as well as mitochondrial content were assessed by cytofluorimetric and confocal microscopy analysis; mtDNA was assessed by qRT-PCR. Differentiation markers were monitored by cytofluorimetric analysis. Gene expression analysis (GEA) was performed on healthy HS/PCs, and differently expressed genes were validated in healthy and leukemia cells by qRT-PCR. STAT1 expression and phosphorylation were assessed by Western blotting. Data were compared by an unpaired Student t test or one-way ANOVA. RESULTS: DFX, at clinically relevant concentrations, increased the clonogenic capacity of healthy human CD34+ HS/PCs to form erythroid colonies. Extension of this analysis to human-derived leukemia cell lines Kasumi-1, K562 and HL60 confirmed DFX capacity to upregulate the expression of specific markers of haematopoietic commitment. Notably, the abovementioned DFX-induced effects are all prevented by the antioxidant NAC and accompanied with overproduction of mitochondria-generated reactive oxygen species (ROS) and increase of mitochondrial content and mtDNA copy number. GEA unveiled upregulation of genes linked to interferon (IFN) signalling and tracked back to hyper-phosphorylation of STAT1. Treatment of leukemic cell lines with NAC prevented the DFX-mediated phosphorylation of STAT1 as well as the expression of the IFN-stimulated genes. However, STAT1 inhibition by fludarabine was not sufficient to affect differentiation processes in leukemic cell lines. CONCLUSIONS: These findings suggest a significant involvement of redox signalling as a major regulator of multiple DFX-orchestrated events promoting differentiation in healthy and tumour cells. The understanding of molecular mechanisms underlying the haematological response by DFX would enable to predict patient's ability to respond to the drug, to extend treatment to other patients or to anticipate the treatment, regardless of the iron overload.


Asunto(s)
Deferasirox/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Interferones/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Western Blotting , Diferenciación Celular/efectos de los fármacos , Línea Celular , Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Leucemia/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
20.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195749

RESUMEN

Growing evidence highlights a tight connection between circadian rhythms, molecular clockworks, and mitochondrial function. In particular, mitochondrial quality control and bioenergetics have been proven to undergo circadian oscillations driven by core clock genes. Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by a selective loss of dopaminergic neurons. Almost half of the autosomal recessive forms of juvenile parkinsonism have been associated with mutations in the PARK2 gene coding for parkin, shown to be involved in mitophagy-mediated mitochondrial quality control. The aim of this study was to investigate, in fibroblasts from genetic PD patients carrying parkin mutations, the interplay between mitochondrial bioenergetics and the cell autonomous circadian clock. Using two different in vitro synchronization protocols, we demonstrated that normal fibroblasts displayed rhythmic oscillations of both mitochondrial respiration and glycolytic activity. Conversely, in fibroblasts obtained from PD patients, a severe damping of the bioenergetic oscillatory patterns was observed. Analysis of the core clock genes showed deregulation of their expression patterns in PD fibroblasts, which was confirmed in induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) derived thereof. The results from this study support a reciprocal interplay between the clockwork machinery and mitochondrial energy metabolism, point to a parkin-dependent mechanism of regulation, and unveil a hitherto unappreciated level of complexity in the pathophysiology of PD and eventually other neurodegenerative diseases.


Asunto(s)
Proteínas CLOCK/genética , Metabolismo Energético/genética , Mutación/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas CLOCK/metabolismo , Respiración de la Célula , Ritmo Circadiano/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucólisis , Humanos , Ratones Desnudos , Mitocondrias/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...