Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biomed Pharmacother ; 170: 115959, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061134

RESUMEN

BACKGROUND: The intensified search for low-threshold herbal anti-viral drugs would be of great advantage in prevention of early stages of infection. Since the SARS-CoV-2 Omicron variant has prevailed in western countries, the course has only been mild, but there are still no widely available drugs that can alleviate or shorten disease progression and counteract the development of Long-COVID. This study aimed to investigate the antiviral effects of a CO2-extract from Petasites hybridus (Ze 339). METHODS: We analyzed the infection and replication rate of SARS-CoV-2 in primary normal human bronchial epithelial cells (NHBEs) using a GFP-expressing version of the wild-type SARS-CoV-2 virus and live cell imaging. Upon infection with a clinical isolate of the Omicron variant, viral RNA content was quantified, and plaque assays were performed. In addition, the human transcriptome was analyzed after 4- and 24-hours post infection using whole genome microarrays. RESULTS: Ze 339 had a protective effect on primary airway epithelial cells during SARS-CoV-2 infection and impeded SARS-CoV-2 infection and replication in NHBE. Notably, Ze 339 inhibited the expression of infection-induced IFNA10 by 8.6-fold (p < 0.05) and additionally reduced a wide range of other interferons (IFNA6, IFNA7, IFNA8, IFNA21, IFNE, IFNW1). CONCLUSION: Thereby, Ze 339 attenuated epithelial infection by SARS-CoV-2 and modeled the IFN response. In conclusion, this study highlights Ze 339 as a potential treatment option for COVID-19 that limits infection-associated cell intrinsic immune responses.


Asunto(s)
COVID-19 , Petasites , Humanos , SARS-CoV-2 , Dióxido de Carbono , Síndrome Post Agudo de COVID-19 , Replicación Viral
3.
Nat Commun ; 14(1): 8045, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052817

RESUMEN

Zika virus (ZIKV) has emerged as a global health issue, yet neither antiviral therapy nor a vaccine are available. ZIKV is an enveloped RNA virus, replicating in the cytoplasm in close association with ER membranes. Here, we isolate ER membranes from ZIKV-infected cells and determine their proteome. Forty-six host cell factors are enriched in ZIKV remodeled membranes, several of these having a role in redox and methylation pathways. Four proteins are characterized in detail: thioredoxin reductase 1 (TXNRD1) contributing to folding of disulfide bond containing proteins and modulating ZIKV secretion; aldo-keto reductase family 1 member C3 (AKR1C3), regulating capsid protein abundance and thus, ZIKV assembly; biliverdin reductase B (BLVRB) involved in ZIKV induced lipid peroxidation and increasing stability of viral transmembrane proteins; adenosylhomocysteinase (AHCY) indirectly promoting m6A methylation of ZIKV RNA by decreasing the level of S- adenosyl homocysteine and thus, immune evasion. These results highlight the involvement of redox and methylation enzymes in the ZIKV life cycle and their accumulation at virally remodeled ER membranes.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/genética , Metilación , Provirus , Replicación Viral/fisiología , Proteínas Virales/metabolismo , Oxidación-Reducción
4.
EMBO J ; 42(23): e113279, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881155

RESUMEN

The immune system is in place to assist in ensuring tissue homeostasis, which can be easily perturbed by invading pathogens or nonpathogenic stressors causing tissue damage. Extracellular nucleotides are well known to contribute to innate immune signaling specificity and strength, but how their signaling is relayed downstream of cell surface receptors and how this translates into antiviral immunity is only partially understood. Here, we systematically investigated the responses of human macrophages to extracellular nucleotides, focusing on the nucleotide-sensing GPRC receptors of the P2Y family. Time-resolved transcriptomic analysis showed that adenine- and uridine-based nucleotides induce a specific, immediate, and transient cytokine response through the MAPK signaling pathway that regulates transcriptional activation by AP-1. Using receptor trans-complementation, we identified a subset of P2Ys (P2Y1, P2Y2, P2Y6, and P2Y11) that govern inflammatory responses via cytokine induction, while others (P2Y4, P2Y11, P2Y12, P2Y13, and P2Y14) directly induce antiviral responses. Notably, P2Y11 combined both activities, and depletion or inhibition of this receptor in macrophages impaired both inflammatory and antiviral responses. Collectively, these results highlight the underappreciated functions of P2Y receptors in innate immune processes.


Asunto(s)
Nucleótidos , Transducción de Señal , Humanos , Citocinas , Inmunidad , Macrófagos/metabolismo , Nucleótidos/metabolismo , Replicación Viral
5.
Cell ; 186(22): 4834-4850.e23, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37794589

RESUMEN

Regulation of viral RNA biogenesis is fundamental to productive SARS-CoV-2 infection. To characterize host RNA-binding proteins (RBPs) involved in this process, we biochemically identified proteins bound to genomic and subgenomic SARS-CoV-2 RNAs. We find that the host protein SND1 binds the 5' end of negative-sense viral RNA and is required for SARS-CoV-2 RNA synthesis. SND1-depleted cells form smaller replication organelles and display diminished virus growth kinetics. We discover that NSP9, a viral RBP and direct SND1 interaction partner, is covalently linked to the 5' ends of positive- and negative-sense RNAs produced during infection. These linkages occur at replication-transcription initiation sites, consistent with NSP9 priming viral RNA synthesis. Mechanistically, SND1 remodels NSP9 occupancy and alters the covalent linkage of NSP9 to initiating nucleotides in viral RNA. Our findings implicate NSP9 in the initiation of SARS-CoV-2 RNA synthesis and unravel an unsuspected role of a cellular protein in orchestrating viral RNA production.


Asunto(s)
COVID-19 , ARN Viral , Humanos , COVID-19/metabolismo , Endonucleasas/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/genética , Replicación Viral
6.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37676257

RESUMEN

A notable signalling mechanism employed by mammalian innate immune signalling pathways uses nucleotide-based second messengers such as 2'3'-cGAMP and 2'-5'-oligoadenylates (OAs), which bind and activate STING and RNase L, respectively. Interestingly, the involvement of nucleotide second messengers to activate antiviral responses is evolutionarily conserved, as evidenced by the identification of an antiviral cGAMP-dependent pathway in Drosophila. Using a mass spectrometry approach, we identified several members of the ABCF family in human, mouse and Drosophila cell lysates as 2'-5' OA-binding proteins, suggesting an evolutionarily conserved function. Biochemical characterization of these interactions demonstrates high-affinity binding of 2'-5' OA to ABCF1, dependent on phosphorylated 2'-5' OA and an intact Walker A/B motif of the ABC cassette of ABCF1. As further support for species-specific interactions with 2'-5' OA, we additionally identified that the metabolic enzyme Decr1 from mouse, but not human or Drosophila cells, forms a high-affinity complex with 2'-5' OA. A 1.4 Å co-crystal structure of the mouse Decr1-2'-5' OA complex explains high-affinity recognition of 2'-5' OA and the mechanism of species specificity. Despite clear evidence of physical interactions, we could not identify profound antiviral functions of ABCF1, ABCF3 or Decr1 or 2'-5' OA-dependent regulation of cellular translation rates, as suggested by the engagement of ABCF proteins. Thus, although the biological consequences of the here identified interactions need to be further studied, our data suggest that 2'-5' OA can serve as a signalling hub to distribute a signal to different recipient proteins.


Asunto(s)
Antivirales , Drosophila , Animales , Ratones , Nucleótidos , Mamíferos
7.
mBio ; 14(5): e0144123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702492

RESUMEN

IMPORTANCE: Dengue virus (DENV) is a major human pathogen that can cause hemorrhagic fever and shock syndrome. One important factor of DENV pathogenicity is non-structural protein 1 (NS1), a glycoprotein that is secreted from infected cells. Here we study the mode of action of the widely used drug ivermectin, used to treat parasitic infections and recently shown to lower NS1 blood levels in DENV-infected patients. We found that ivermectin blocks the nuclear transport of transcription factors required for the expression of chaperones that support the folding and secretion of glycoproteins, including NS1. Impairing nuclear transport of these transcription factors by ivermectin or depleting them from infected cells dampens NS1 folding and thus its secretion. These results reveal a novel mode of action of ivermectin that might apply to other flaviviruses as well.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Virus del Dengue/metabolismo , Chaperón BiP del Retículo Endoplásmico , Ivermectina/farmacología , Ivermectina/metabolismo , Carioferinas , Chaperonas Moleculares/metabolismo , Factores de Transcripción/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
8.
Nat Commun ; 14(1): 4906, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582777

RESUMEN

Changes of mRNA 3'UTRs by alternative polyadenylation (APA) have been associated to numerous pathologies, but the mechanisms and consequences often remain enigmatic. By combining transcriptomics, proteomics and recombinant viruses we show that all tested strains of IAV, including A/PR/8/34(H1N1) (PR8) and A/Cal/07/2009 (H1N1) (Cal09), cause APA. We mapped the effect to the highly conserved glycine residue at position 184 (G184) of the viral non-structural protein 1 (NS1). Unbiased mass spectrometry-based analyses indicate that NS1 causes APA by perturbing the function of CPSF4 and that this function is unrelated to virus-induced transcriptional shutoff. Accordingly, IAV strain PR8, expressing an NS1 variant with weak CPSF binding, does not induce host shutoff but only APA. However, recombinant IAV (PR8) expressing NS1(G184R) lacks binding to CPSF4 and thereby also the ability to cause APA. Functionally, the impaired ability to induce APA leads to an increased inflammatory cytokine production and an attenuated phenotype in a mouse infection model. Investigating diverse viral infection models showed that APA induction is a frequent ability of many pathogens. Collectively, we propose that targeting of the CPSF complex, leading to widespread alternative polyadenylation of host transcripts, constitutes a general immunevasion mechanism employed by a variety of pathogenic viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Animales , Ratones , Virus de la Influenza A/genética , Regiones no Traducidas 3'/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Poliadenilación , Virulencia/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
9.
Life Sci Alliance ; 6(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558422

RESUMEN

RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.


Asunto(s)
Proteína 58 DEAD Box , Receptores Inmunológicos , Transducción de Señal , Virosis , Línea Celular , Receptores Inmunológicos/inmunología , Proteína 58 DEAD Box/inmunología , Virosis/inmunología
10.
Viruses ; 15(8)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37632105

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is the central entry receptor for SARS-CoV-2. However, surprisingly little is known about the effects of host regulators on ACE2 localization, expression, and the associated influence on SARS-CoV-2 infection. Here we identify that ACE2 expression levels are regulated by the E3 ligase MDM2 and that MDM2 levels indirectly influence infection with SARS-CoV-2. Genetic depletion of MDM2 elevated ACE2 expression levels, which strongly promoted infection with all SARS-CoV-2 isolates tested. SARS-CoV-2 spike-pseudotyped viruses and the uptake of non-replication-competent virus-like particles showed that MDM2 affects the viral uptake process. MDM2 ubiquitinates Lysine 788 of ACE2 to induce proteasomal degradation, and degradation of this residue led to higher ACE2 expression levels and superior virus particle uptake. Our study illustrates that cellular regulators of ACE2 stability, such as MDM2, play an important role in defining the infection capabilities of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2 , Transporte Biológico , Lisina , Proteínas Proto-Oncogénicas c-mdm2/genética
11.
Cell Mol Gastroenterol Hepatol ; 16(2): 201-221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37054914

RESUMEN

BACKGROUND & AIMS: A single hepatitis B virus (HBV) particle is sufficient to establish chronic infection of the liver after intravenous injection, suggesting that the virus targets hepatocytes via a highly efficient transport pathway. We therefore investigated whether HBV uses a physiological liver-directed pathway that supports specific host-cell targeting in vivo. METHODS: We established the ex vivo perfusion of intact human liver tissue that recapitulates the liver physiology to investigate HBV liver targeting. This model allowed us to investigate virus-host cell interactions in a cellular microenvironment mimicking the in vivo situation. RESULTS: HBV was rapidly sequestered by liver macrophages within 1 hour after a virus pulse perfusion but was detected in hepatocytes only after 16 hours. We found that HBV associates with lipoproteins in serum and within machrophages. Electron and immunofluorescence microscopy corroborated a co-localization in recycling endosomes within peripheral and liver macrophages. Recycling endosomes accumulated HBV and cholesterol, followed by transport of HBV back to the cell surface along the cholesterol efflux pathway. To reach hepatocytes as final target cells, HBV was able to utilize the hepatocyte-directed cholesterol transport machinery of macrophages. CONCLUSIONS: Our results propose that by binding to liver targeted lipoproteins and using the reverse cholesterol transport pathway of macrophages, HBV hijacks the physiological lipid transport pathways to the liver to most efficiently reach its target organ. This may involve transinfection of liver macrophages and result in deposition of HBV in the perisinusoidal space from where HBV can bind its receptor on hepatocytes.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Virus de la Hepatitis B/fisiología , Hepatocitos/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Lípidos
12.
J Virol ; 97(3): e0010823, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916940

RESUMEN

Molluscum contagiosum virus (MCV) is a human-adapted poxvirus that causes a common and persistent yet mild infection characterized by distinct, contagious, papular skin lesions. These lesions are notable for having little or no inflammation associated with them and can persist for long periods without an effective clearance response from the host. Like all poxviruses, MCV encodes potent immunosuppressive proteins that perturb innate immune pathways involved in virus sensing, the interferon response, and inflammation, which collectively orchestrate antiviral immunity and clearance, with several of these pathways converging at common signaling nodes. One such node is the regulator of canonical nuclear factor kappa B (NF-κB) activation, NF-κB essential modulator (NEMO). Here, we report that the MCV protein MC008 specifically inhibits NF-κB through its interaction with NEMO, disrupting its early ubiquitin-mediated activation and subsequent downstream signaling. MC008 is the third NEMO-targeting inhibitor to be described in MCV to date, with each inhibiting NEMO activation in distinct ways, highlighting strong selective pressure to evolve multiple ways of disabling this key signaling protein. IMPORTANCE Inflammation lies at the heart of most human diseases. Understanding the pathways that drive this response is the key to new anti-inflammatory therapies. Viruses evolve to target inflammation; thus, understanding how they do this reveals how inflammation is controlled and, potentially, how to disable it when it drives disease. Molluscum contagiosum virus (MCV) has specifically evolved to infect humans and displays an unprecedented ability to suppress inflammation in our tissue. We have identified a novel inhibitor of human innate signaling from MCV, MC008, which targets NEMO, a core regulator of proinflammatory signaling. Furthermore, MC008 appears to inhibit early ubiquitination, thus interrupting later events in NEMO activation, thereby validating current models of IκB kinase (IKK) complex regulation.


Asunto(s)
Virus del Molusco Contagioso , FN-kappa B , Humanos , FN-kappa B/metabolismo , Virus del Molusco Contagioso/metabolismo , Proteínas Virales/metabolismo , Transducción de Señal , Ubiquitinación , Quinasa I-kappa B/metabolismo
13.
Science ; 379(6632): 586-591, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758070

RESUMEN

Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.


Asunto(s)
Alphainfluenzavirus , Antivirales , Betainfluenzavirus , Productos Biológicos , Inhibidores Enzimáticos , Metiltransferasas , Caperuzas de ARN , Tubercidina , Replicación Viral , Animales , Humanos , Ratones , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/biosíntesis , Replicación Viral/efectos de los fármacos , Alphainfluenzavirus/efectos de los fármacos , Betainfluenzavirus/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Antivirales/química , Antivirales/farmacología , Tubercidina/análogos & derivados , Tubercidina/farmacología , Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Streptomyces/química , Simulación por Computador , Células A549
14.
STAR Protoc ; 3(4): 101699, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36152303

RESUMEN

The quality of an antigen-specific CD8+ T cell repertoire is crucial for the clearance of intracellular pathogens, in particular for viral infections. Here, we describe killing assays to determine the function of CD8+ T cells engineered with SARS-CoV-2-specific T cell receptors in a near-physiological system for antigen presentation. We detail the use of target cells either infected with replicating SARS-CoV-2 virus or engineered with SARS-CoV-2 open reading frames. For complete details on the use and execution of this protocol, please refer to Moosmann et al. (2022) and Wagner et al. (2022).


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Linfocitos T CD8-positivos , Presentación de Antígeno , Animales Modificados Genéticamente , Muerte Celular
15.
Viruses ; 14(7)2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35891571

RESUMEN

Human endogenous retrovirus (HERVs), normally silenced by methylation or mutations, can be reactivated by multiple environmental factors, including infections with exogenous viruses. In this work, we investigated the transcriptional activity of HERVs in human A549 cells infected by two wild-type (PR8M, SC35M) and one mutated (SC35MΔNS1) strains of Influenza A virus (IAVs). We found that the majority of differentially expressed HERVs (DEHERVS) and genes (DEGs) were up-regulated in the infected cells, with the most significantly enriched biological processes associated with the genes differentially expressed exclusively in SC35MΔNS1 being linked to the immune system. Most DEHERVs in PR8M and SC35M are mammalian apparent LTR retrotransposons, while in SC35MΔNS1, more HERV loci from the HERVW9 group were differentially expressed. Furthermore, up-regulated pairs of HERVs and genes in close chromosomal proximity to each other tended to be associated with immune responses, which implies that specific HERV groups might have the potential to trigger specific gene networks and influence host immunological pathways.


Asunto(s)
Retrovirus Endógenos , Virus de la Influenza A , Animales , Antivirales , Retrovirus Endógenos/genética , Humanos , Sistema Inmunológico , Virus de la Influenza A/genética , Mamíferos , Retroelementos
16.
EMBO J ; 41(17): e111608, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35833542

RESUMEN

The SARS-CoV-2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'-O-ribose cap needed for viral immune escape. We find that the host cap 2'-O-ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS-CoV-2 replication. Using in silico target-based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti-SARS-CoV-2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co-substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID-19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection-induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Inflamación/tratamiento farmacológico , Metiltransferasas/metabolismo , Ratones , Caperuzas de ARN/metabolismo , ARN Viral/genética , Ribosa , Proteínas no Estructurales Virales/genética
17.
Cell Chem Biol ; 29(9): 1434-1445.e7, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35820417

RESUMEN

Bacteriophages are potent therapeutics against biohazardous bacteria, which rapidly develop multidrug resistance. However, routine administration of phage therapy is hampered by a lack of rapid production, safe bioengineering, and detailed characterization of phages. Thus, we demonstrate a comprehensive cell-free platform for personalized production, transient engineering, and proteomic characterization of a broad spectrum of phages. Using mass spectrometry, we validated hypothetical and non-structural proteins and could also monitor the protein expression during phage assembly. Notably, a few microliters of a one-pot reaction produced effective doses of phages against enteroaggregative Escherichia coli (EAEC), Yersinia pestis, and Klebsiella pneumoniae. By co-expressing suitable host factors, we could extend the range of cell-free production to phages targeting gram-positive bacteria. We further introduce a non-genomic phage engineering method, which adds functionalities for only one replication cycle. In summary, we expect this cell-free methodology to foster reverse and forward phage engineering and customized production of clinical-grade bacteriophages.


Asunto(s)
Bacteriófagos , Bacterias , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Klebsiella pneumoniae , Proteómica
18.
EMBO Rep ; 23(6): e54305, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35527514

RESUMEN

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteína ADAM10/genética , Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide/genética , Enzima Convertidora de Angiotensina 2 , Fusión Celular , Humanos , Pulmón , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
19.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503420

RESUMEN

Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung.


Asunto(s)
Infecciones Bacterianas , Gusto , Animales , Células Epiteliales , Inmunidad Innata , Ratones , Pseudomonas aeruginosa , Transducción de Señal , Gusto/fisiología , Tráquea
20.
Elife ; 112022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35475759

RESUMEN

Host proteins sense viral products and induce defence mechanisms, particularly in immune cells. Using cell-free assays and quantitative mass spectrometry, we determined the interactome of capsid-host protein complexes of herpes simplex virus and identified the large dynamin-like GTPase myxovirus resistance protein B (MxB) as an interferon-inducible protein interacting with capsids. Electron microscopy analyses showed that cytosols containing MxB had the remarkable capability to disassemble the icosahedral capsids of herpes simplex viruses and varicella zoster virus into flat sheets of connected triangular faces. In contrast, capsids remained intact in cytosols with MxB mutants unable to hydrolyse GTP or to dimerize. Our data suggest that MxB senses herpesviral capsids, mediates their disassembly, and thereby restricts the efficiency of nuclear targeting of incoming capsids and/or the assembly of progeny capsids. The resulting premature release of viral genomes from capsids may enhance the activation of DNA sensors, and thereby amplify the innate immune responses.


Asunto(s)
Cápside , Herpesviridae , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , GTP Fosfohidrolasas/metabolismo , Interferones/metabolismo , Simplexvirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...