Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4982, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862504

RESUMEN

Various noncollinear spin textures and magnetic phases have been predicted in twisted two-dimensional CrI3 due to competing ferromagnetic (FM) and antiferromagnetic (AFM) interlayer exchange from moiré stacking-with potential spintronic applications even when the underlying material possesses a negligible Dzyaloshinskii-Moriya or dipole-dipole interaction. Recent measurements have shown evidence of coexisting FM and AFM layer order in small-twist-angle CrI3 bilayers and double bilayers. Yet, the nature of the magnetic textures remains unresolved and possibilities for their manipulation and electrical readout are unexplored. Here, we use tunneling magnetoresistance to investigate the collective spin states of twisted double-bilayer CrI3 under both out-of-plane and in-plane magnetic fields together with detailed micromagnetic simulations of domain dynamics based on magnetic circular dichroism. Our results capture hysteretic and anisotropic field evolutions of the magnetic states and we further uncover two distinct non-volatile spin textures (out-of-plane and in-plane domains) at ≈1° twist angle, with a different global tunneling resistance that can be switched by magnetic field.

2.
ACS Omega ; 9(13): 15463-15467, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585054

RESUMEN

Over the past decade, two-dimensional (2D) layered semiconducting materials, with their distinctive structures and unique physicochemical properties, have attracted attention for potential applications in photonics and optoelectronics. In this study, we utilized time-domain broadband Brillouin scattering on a single germanium monosulfide (GeS) crystal to determine the out-of-plane longitudinal sound speed, evaluated at vL = (4035 ± 200) m/s. The reported results demonstrate the effectiveness of this nondestructive, all-optical technique for measuring the elastic properties in fragile 2D layered materials and provide the value of the out-of-plane compressive elastic constant, C = (69 ± 7) GPa.

3.
Phys Chem Chem Phys ; 26(2): 1039-1045, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38093689

RESUMEN

The prediction of solvent properties using molecular probes often relies on correlating steady-state absorption and fluorescence measurements, as well as determining absorption maxima and/or Stokes shifts. In this study, we employ femtosecond broadband transient absorption (fs-bb-TA) spectroscopy to investigate the spectroscopic behaviour of the intramolecular charge transfer (ICT) excited state of 3CzClIPN (2,4,6-tri(9H-carbazol-9-yl)-5-chloroisophthalonitrile), a representative ICT organic molecule, in both aromatic and non-aromatic solvents. Unlike observations in non-aromatic media, fs-bb-TA spectra of 3CzClIPN in aromatic solvents exhibit enhanced spectral broadening that strongly correlates with the solvent's polarity. We hypothesise that this spectral broadening originates from a wider configurational energy landscape experienced by the positively charged carbazole Cz+ group, owing to the larger size and, consequently, reduced solvation effectiveness of aromatic solvent molecules.

5.
Rev Sci Instrum ; 92(10): 103303, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717399

RESUMEN

Highly energetic ultrashort electron bunches have the potential to reveal the ultrafast structural dynamics in relatively thicker in-liquid samples. However, direct current voltages higher than 100 kV are exponentially difficult to attain as surface and vacuum breakdown become an important problem as the electric field increases. One of the most demanding components in the design of a high-energy electrostatic ultrafast electron source is the high voltage feedthrough (HVFT), which must keep the electron gun from discharging against ground. Electrical discharges can cause irreversible component damage, while voltage instabilities render the instrument inoperative. We report the design, manufacturing, and conditioning process for a new HVFT that utilizes ultra-high molecular weight polyethylene as the insulating material. Our HVFT is highly customizable and inexpensive and has proven to be effective in high voltage applications. After a couple of weeks of gas and voltage conditioning, we achieved a maximum voltage of 180 kV with a progressively improved vacuum level of 1.8 × 10-8 Torr.

6.
J Phys Chem Lett ; 10(19): 5742-5747, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31498643

RESUMEN

Multiply charged anions (MCAs) display unique photophysics and solvent-stabilizing effects. Well-known aqueous species such as SO42- and PO43- experience spontaneous electron detachment or charge-separation fragmentation in the gas phase owing to the strong Coulomb repulsion arising from the excess of negative charge. Thus, anions often present low photodetachment thresholds and the ability to quickly eject electrons into the solvent via charge-transfer-to-solvent (CTTS) states. Here, we report spectroscopic evidence for the existence of a repulsive Coulomb barrier (RCB) that blocks the ejection of "CTTS-like" electrons of the aqueous B12F122- dianion. Our spectroscopic experimental and theoretical studies indicate that despite the exerted Coulomb repulsion by the nascent radical monoanion B12F12-•aq, the photoexcited electron remains about the B12F12-• core. The RCB is an established feature of the potential energy landscape of MCAs in vacuo, which seems to extend to the liquid phase highlighting recent observations about the dielectric behavior of confined water.

7.
Nanotechnology ; 30(39): 395703, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31242474

RESUMEN

We introduce a nanofluidic platform that can be used to carry out femtosecond electron diffraction (FED) and transmission electron microscopy (TEM) measurements in liquid samples or in-liquid specimens, respectively. The nanofluidic cell (NFC) system presented herein has been designed to withstand high sample refreshing rates (over one kilohertz), a prerequisite to succeed with FED experiments in our lab. Short beam paths, below 1 µm, in combination with ultrathin membranes (less than 100 nm thick) are necessary conditions for in-liquid FED and TEM studies due to the strongly interacting nature of electrons. Depending on the application, the beam path in our NFC can be tuned between 50 nm and 10 µm with ultrathin stoichiometric silicon nitride (Si3N4) windows as thin as 20 nm. Stoichiometric Si3N4 has been selected to reduce membrane bulging owing to its higher tensile stress and transparency in the UV-vis-NIR region to allow for laser excitation in FED experiments. Key design parameters and improvements made over previous NFC systems are discussed, and some preliminary electron images obtained by 200 kV scanning TEM are presented.

8.
Struct Dyn ; 4(4): 044005, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28191483

RESUMEN

An electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation. Comparisons with compact electron sources commonly used for femtosecond electron diffraction are made.

9.
Science ; 350(6267): 1501-5, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26680192

RESUMEN

Correlated electron systems can undergo ultrafast photoinduced phase transitions involving concerted transformations of electronic and lattice structure. Understanding these phenomena requires identifying the key structural modes that couple to the electronic states. We report the ultrafast photoresponse of the molecular crystal Me4P[Pt(dmit)2]2, which exhibits a photoinduced charge transfer similar to transitions between thermally accessible states, and demonstrate how femtosecond electron diffraction can be applied to directly observe the associated molecular motions. Even for such a complex system, the key large-amplitude modes can be identified by eye and involve a dimer expansion and a librational mode. The dynamics are consistent with the time-resolved optical study, revealing how the electronic, molecular, and lattice structures together facilitate ultrafast switching of the state.

10.
Nat Commun ; 5: 3863, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24835317

RESUMEN

Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often reaching the universal threshold for plasma formation of ~1 J cm(-2) in most solids. Here we show single-shot time-resolved femtosecond electron diffraction, femtosecond optical reflectivity and ion detection experiments to study the evolution of the ablation process that follows femtosecond 400 nm laser excitation in crystalline sodium chloride, caesium iodide and potassium iodide. The phenomenon in this class of materials occurs well below the threshold for plasma formation and even below the melting point. The results reveal fast electronic and localized structural changes that lead to the ejection of particulates and the formation of micron-deep craters, reflecting the very nature of the strong repulsive forces at play.

11.
J Chem Phys ; 132(22): 224301, 2010 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-20550391

RESUMEN

The photoelectron spectra of NCCCN(-) have been measured at 355 and 266 nm by means of photoelectron imaging. The spectra show two distinct features, corresponding to the ground and first excited states of dycianocarbene. With support from theoretical calculations using the spin-flip coupled-cluster methods, the ground electronic state of HCCCN is assigned as a triplet state, while the first excited state is a closed-shell singlet. The photoelectron band corresponding to the triplet is broad and congested, indicating a large geometry change between the anion and neutral. A single sharp feature of the singlet band suggests that the geometry of the excited neutral is similar to that of the anion. In agreement with these observations, theoretical calculations show that the neutral triplet state is either linear or quasilinear (X (3)B(1) or (3)Sigma(g) (-)), while the closed-shell singlet (a (1)A(1)) geometry is strongly bent, similar to the anion structure. The adiabatic electron binding energy of the closed-shell singlet is measured to be 3.72+/-0.02 eV. The best estimate of the origin of the triplet band gives an experimental upper bound of the adiabatic electron affinity of NCCCN, EA

12.
J Phys Chem A ; 114(3): 1367-73, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19817360

RESUMEN

The effects of anion solvation by N(2)O on photoelectron angular distributions are revisited in light of new photoelectron imaging results for the NO(-)(N(2)O)(n), n = 0-4 cluster anions at 266 nm. The new observations are examined in the context of the previous studies of O(-) and NO(-) anions solvated in the gas phase by nitrous oxide [Pichugin; et al. J. Chem. Phys. et al. 2008, 129, 044311.; Velarde; et al. J. Chem. Phys. et al. 2007, 127, 084302.]. The photoelectron angular distributions collected in the three separate studies are summarized and analyzed using bare O(-) and NO(-) as zero-solvation references. Solvent-induced deviations of the angular distributions from the zero-solvation reference are scaled by solvation number (n) to yield solvent-induced anisotropy differentials. These differentials, calculated identically for the O(-)(N(2)O)(n) and NO(-)(N(2)O)(n) cluster series, show remarkably similar energy dependences, peaking in the vicinity of a known electron-N(2)O scattering resonance. The results support the conclusion that the solvation effect on the photoelectron angular distributions in these cases is primarily due to resonant interaction of photoelectrons with the N(2)O solvent, rather than a solvent-induced perturbation of the parent-anion electronic wave function.

13.
J Chem Phys ; 131(16): 164308, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19894948

RESUMEN

Negative-ion photoelectron imaging at 532, 392, 355, and 266 nm is used to assign several low-lying electronic states of neutral nitromethane CH(3)NO(2) at the geometry corresponding to the anion equilibrium. The observed neutral states include (in the order of increasing binding energy) the X (1)A(') ground state, two triplet excited states, a (3)A(") and b (3)A("), and the first excited singlet state, A (1)A("). The state assignments are aided by the analysis of the photoelectron angular distributions resulting from electron detachment from the a(') and a(") symmetry molecular orbitals and the results of theoretical calculations. The singlet-triplet (X (1)A(')-a (3)A(")) splitting in nitromethane is determined as 2.90(+0.02)/(-0.07) eV, while the vibrational structure of the band corresponding to the formation of the a (3)A(") state of CH(3)NO(2) is attributed to the ONO bending and NO(2) wagging motions excited in the photodetachment of the anion.

14.
Chem Soc Rev ; 38(8): 2169-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19623341

RESUMEN

Photoelectron imaging is finding increasingly widespread use in probing electronic structure and chemical dynamics. In this tutorial review, two benchmark systems, H(-) and I(-), are used to introduce essential concepts linking photoelectron images of negative ions with parent electronic structure. For pedagogical reasons, a qualitative approach based upon spectroscopic selection rules is emphasized in interpreting the images. This approach is extended to molecular systems, highlighting that even qualitative interpretation of results can lead to significant chemical insights.

15.
J Chem Phys ; 129(4): 044311, 2008 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-18681650

RESUMEN

We report a photoelectron imaging study of the [O(N(2)O)(n)](-), 0or=4 (and up to at least n=9) signatures of an O(-) core are predominantly observed. Photofragmentation studies at 355 nm support these results.

16.
J Chem Phys ; 127(8): 084302, 2007 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-17764243

RESUMEN

Photodetachment from NO(-)(N(2)O)(n) cluster anions (n< or =7) is investigated using photoelectron imaging at 786, 532, and 355 nm. Compared to unsolvated NO(-), the photoelectron anisotropy with respect to the laser polarization direction diminishes drastically in the presence of the N(2)O solvent, especially in the 355 nm data. In contrast, a less significant anisotropy loss is observed for NO(-)(H(2)O)(n). The effect is attributed to photoelectron scattering on the solvent, which in the N(2)O case is mediated by the (2)Pi anionic resonance. No anionic resonances exist for H(2)O in the applicable photoelectron energy range, in line with the observed difference between the photoelectron images obtained with the two solvents. The momentum-transfer cross section, rather than the total scattering cross section, is argued to be an appropriate physical parameter predicting the solvent effects on the photoelectron angular distributions in these cluster anions.

17.
J Chem Phys ; 123(5): 054329, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16108661

RESUMEN

Time-resolved photoelectron imaging of negative ions is employed to examine 780-nm dissociation dynamics of I2(-), emphasizing the effects of interference in time-resolved photoelectron angular distributions obtained with 390-nm probe. No energetic changes are observed after about 700 fs, but the evolution of the photoelectron anisotropy persists for up to 2.5 ps, indicating that the electronic wave function of the dissociating anion continues to evolve long after the asymptotic energetic limit of the reaction has been effectively reached. The time scale of the anisotropy variation corresponds to a fragment separation of the same order of magnitude as the de Broglie wavelength of the emitted electrons (lambda=35 A). These findings are interpreted by considering the effect of I2(-) inversion symmetry and viewing the dissociating anion as a dynamic molecular-scale "interferometer," with the electron waves emitted from two separating centers. The predictions of the model are in agreement with the present experiment and shed new light on previously published results [A. V. Davis, R. Wester, A. E. Bragg, and D. M. Neumark, J. Chem. Phys. 118, 999 (2003)].

18.
J Chem Phys ; 122(17): 174305, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15910030

RESUMEN

Time-resolved photoelectron imaging of negative ions is employed to study the dynamics along the reaction coordinate in the photodissociation of IBr(-). The results are discussed in a side-by-side comparison with the dissociation of I(2) (-), examined under similar experimental conditions. The I(2) (-) anion, extensively studied in the past, is used as a reference system for interpreting the IBr(-) results. The data provide rigorous dynamical tests of the anion electronic potentials. The evolution of the energetics revealed in the time-resolved (780 nm pump, 390 nm probe) I(2) (-) and IBr(-) photoelectron images is compared to the predictions of classical trajectory calculations, with the time-resolved photoelectron spectra modeled assuming a variety of neutral states accessed in the photodetachment. In light of good overall agreement of the experimental data with the theoretical predictions, the results are used to construct an experimental image of the IBr(-) dissociation potential as a function of the reaction coordinate.

19.
J Chem Phys ; 121(1): 265-72, 2004 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15260544

RESUMEN

The evolution of the I(-) channel in I(2)Br(-) photodissociation is examined using time-resolved negative-ion photoelectron imaging spectroscopy. The 388 nm photodetachment images obtained at variable delays following 388 nm excitation reveal the transformation of the excess electron from that belonging to an excited trihalide anion to that occupying an atomic orbital localized on the I(-) fragment. With increasing pump-probe delay, the corresponding photoelectron band narrows on a approximately 300 fs time scale. This trend is attributed to the localization of the excess-electron wave function on the atomic-anion fragment and the establishment of the fragment's electronic identity. The corresponding band position drifts towards larger electron kinetic energies on a significantly longer, approximately 1 ps, time scale. The gradual spectral shift is attributed to exit-channel interactions affecting the photodetachment energetics, as well as the photoelectron anisotropy. The time-resolved angular distributions are analyzed and found consistent with the formation of the asymptotic I(-) fragment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...