Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 6605, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700362

RESUMEN

Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li2.15(3)Os0.85(3)O3 (C2/c, a = 5.09 Å, b = 8.81 Å, c = 9.83 Å, ß = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment of 0.85 µB, much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T(0.63±0.06). Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)-Os(5+) mixed valence. This local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state.

2.
Phys Rev Lett ; 118(17): 176402, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28498697

RESUMEN

The existence of closed loops of degeneracies in crystals has been intimately connected with associated crystal symmetries, raising the following question: What is the minimum symmetry required for topological character, and can one find an example? Triclinic CaAs_{3}, in the space group P1[over ¯] with only a center of inversion, has been found to display, without need for tuning, a nodal loop of accidental degeneracies with topological character, centered on one face of the Brillouin zone that is otherwise fully gapped. The small loop is very flat in energy, yet is cut four times by the Fermi energy, a condition that results in an intricate repeated touching of inversion related pairs of Fermi surfaces at Weyl points. Spin-orbit coupling lifts the fourfold degeneracy along the loop, leaving trivial Kramers pairs. With its single nodal loop that emerges without protection from any point group symmetry, CaAs_{3} represents the primal "hydrogen atom" of nodal loop systems.

3.
Philos Trans A Math Phys Eng Sci ; 370(1977): 4904-26, 2012 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22987035

RESUMEN

A wealth of intriguing properties emerge in the seemingly simple system composed of the band insulators LaAlO(3) and SrTiO(3) such as a two-dimensional electron gas, superconductivity and magnetism. In this paper, we review the current insight obtained from first principles calculations on the mechanisms governing the behaviour of thin LaAlO(3) films on SrTiO(3)(001). In particular, we explore the strong dependence of the electronic properties on the surface and interface termination, the finite film thickness, lattice polarization and defects. A further aspect that is addressed is how the electronic behaviour and functionality can be tuned by an SrTiO(3) capping layer, adsorbates and metallic contacts. Lastly, we discuss recent reports on the coexistence of magnetism and superconductivity in this system for what they might imply about the electronic structure of this system.

4.
J Phys Condens Matter ; 24(29): 294206, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22773378

RESUMEN

Density functional theory calculations of the electronic structure of Ce- and Pu-based heavy fermion superconductors in the so-called 115 family are performed. The gap equation is used to consider which superconducting order parameters are most favorable assuming a pairing interaction that is peaked at (π, π, qz)­the wavevector for the antiferromagnetic ordering found in close proximity. In addition to the commonly accepted dx2−y2 order parameter, there is evidence that an extended s-wave order parameter with nodes is also plausible. We discuss whether these results are consistent with current observations and possible measurements that could help distinguish between these scenarios.

5.
Nat Mater ; 10(10): 759-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21841798

RESUMEN

Traditional ultraviolet/soft X-ray angle-resolved photoemission spectroscopy (ARPES) may in some cases be too strongly influenced by surface effects to be a useful probe of bulk electronic structure. Going to hard X-ray photon energies and thus larger electron inelastic mean-free paths should provide a more accurate picture of bulk electronic structure. We present experimental data for hard X-ray ARPES (HARPES) at energies of 3.2 and 6.0 keV. The systems discussed are W, as a model transition-metal system to illustrate basic principles, and GaAs, as a technologically-relevant material to illustrate the potential broad applicability of this new technique. We have investigated the effects of photon wave vector on wave vector conservation, and assessed methods for the removal of phonon-associated smearing of features and photoelectron diffraction effects. The experimental results are compared to free-electron final-state model calculations and to more precise one-step photoemission theory including matrix element effects.

6.
Phys Rev Lett ; 106(5): 056401, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21405413

RESUMEN

The quasilinear bands in the topologically trivial skutterudite insulator CoSb(3) are studied under adiabatic, symmetry-conserving displacement of the Sb sublattice. In this cubic, time-reversal and inversion symmetric system, a transition from trivial insulator to topological point Fermi surface system occurs through a critical point in which massless (Dirac) bands appear, and moreover are degenerate with massive bands. Spin-orbit coupling, while small due to the type of band character, coupled with tetragonal strain opens the gap required to give the topological insulator. The mineral skutterudite (CoSb(3)) is very near the critical point in its natural state.

7.
Phys Rev Lett ; 104(16): 166804, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482074

RESUMEN

The perovskite SrTiO3-LaAlO3 structure has advanced to a model system to investigate the rich electronic phenomena arising at polar oxide interfaces. Using first principles calculations and transport measurements we demonstrate that an additional SrTiO3 capping layer prevents atomic reconstruction at the LaAlO3 surface and triggers the electronic reconstruction at a significantly lower LaAlO3 film thickness than for the uncapped systems. Combined theoretical and experimental evidence (from magnetotransport and ultraviolet photoelectron spectroscopy) suggests two spatially separated sheets with electron and hole carriers, that are as close as 1 nm.

8.
Phys Rev Lett ; 102(24): 246401, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19659033

RESUMEN

We present a dynamical mean-field theory study of the valence transition (f;{14} --> f;{13}) in elemental, metallic Yb under pressure. Our calculations reproduce the observed valence transition as reflected in the volume dependence of the 4f occupation. The transition is advanced by heating, and suggests quasiparticle or Kondo-like structure in the spectra of the trivalent end state, consistent with the early lanthanides. Results for the local charge fluctuations and susceptibility, however, show novel signatures uniquely associated with the valence transition itself, indicating that Yb is a fluctuating valence material in contrast with the intermediate valence behavior seen in the early trivalent lanthanides Ce, Pr, and Nd.

9.
Phys Rev Lett ; 103(1): 016402, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19659161

RESUMEN

We develop a tight-binding model description of semi-Dirac electronic spectra, with highly anisotropic dispersion around point Fermi surfaces, recently discovered in electronic structure calculations of VO2-TiO2 nanoheterostructures. We contrast their spectral properties with the well-known Dirac points on the honeycomb lattice relevant to graphene layers and the spectra of bands touching each other in zero-gap semiconductors. We also consider the lowest order dispersion around one of the semi-Dirac points and calculate the resulting electronic energy levels in an external magnetic field. In spite of apparently similar electronic structures, Dirac and semi-Dirac systems support diverse low-energy physics.

10.
Phys Rev Lett ; 101(4): 047001, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18764356

RESUMEN

When either electron or hole doped at concentrations x approximately 0.1, the LaFeAsO family displays remarkably high temperature superconductivity with Tc up to 55 K. In the most energetically stable Q-->M=(pi,pi,0) antiferromagnetic (AFM) phase comprised of tetragonal-symmetry breaking alternating chains of aligned spins, there is a deep pseudogap in the Fe 3d states centered at the Fermi energy arising from light carriers (m* approximately 0.25-0.33), and very strong magnetophonon coupling is uncovered. Doping (of either sign) beyond x approximately 0.08 results in heavy carriers per Fe (by roughly an order of magnitude) with a large Fermi surface. Calculated Fe-Fe transverse exchange couplings Jij(R) reveal that exchange coupling is strongly dependent on both the AFM symmetry and on the Fe-As distance.

11.
Phys Rev Lett ; 96(21): 215701, 2006 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16803251

RESUMEN

We present resonant inelastic x-ray scattering and x-ray emission spectroscopy results on Gd metal to 113 GPa which suggest Kondo-like aspects in the delocalization of 4f electrons. Analysis of the resonant inelastic x-ray scattering data reveals a prolonged and continuous delocalization with volume throughout the entire pressure range, so that the volume-collapse transition at 59 GPa is only part of the phenomenon. Moreover, the Lgamma1 x-ray emission spectroscopy spectra indicate no apparent change in the bare 4f moment across the collapse, suggesting that Kondo screening is responsible for the expected Pauli-like behavior in magnetic susceptibility.

12.
Phys Rev Lett ; 96(9): 096403, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16606289

RESUMEN

Ab initio band theory including correlations due to intra-atomic repulsion is applied to study charge disproportionation and charge and spin ordering in insulating Na0.5CoO2. Various ordering patterns (zigzag and two striped) for four-Co supercells are analyzed before focusing on the observed "out-of-phase stripe" pattern of antiferromagnetic Co4+ spins along charge-ordered stripes. This pattern relieves frustration and shows distinct analogies with the cuprate layers: a bipartite lattice of antialigned spins, with axes at 90degrees angles. Substantial distinctions with cuprates are also discussed, including the tiny gap of a new variant of "charge-transfer" type within the Co 3d system.

13.
Phys Rev Lett ; 96(2): 027211, 2006 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-16486632

RESUMEN

We propose and investigate the properties of a digital ferromagnetic heterostructure consisting of a delta-doped layer of Mn in Si, using ab initio electronic-structure methods. We find that (i) ferromagnetic order of the Mn layer is energetically favorable relative to antiferromagnetic, and (ii) the heterostructure is a two-dimensional half-metallic system. The metallic behavior is contributed by three majority-spin bands originating from hybridized Mn-d and nearest-neighbor Si-p states, and the corresponding carriers are responsible for the ferromagnetic order in the Mn layer. The minority-spin channel has a calculated semiconducting gap of 0.25 eV. The band lineup is found to be favorable for retaining the half-metal character to near the Curie temperature. This kind of heterostructure may be of special interest for integration into mature Si technologies for spintronic applications.

14.
Phys Rev Lett ; 96(4): 047004, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16486875

RESUMEN

The highest superconducting temperature Tc observed in any elemental metal (Li with Tc approximately 18-20 K at pressure 35-48 GPa) is shown to arise from increasingly strong electron-phonon coupling concentrated along intersections of Kohn anomaly surfaces with the evolving Fermi surface. First-principles linear response calculations of the phonon spectrum and spectral function alpha2F(omega) reveal very strong Q- and phonon-polarization dependence of coupling strength, resulting in values of in the observed range. The sharp momentum dependence of the coupling even for the simple Li Fermi surface indicates more generally that a fine Q mesh is required for precise evaluation of lamda.

15.
Phys Rev Lett ; 95(16): 165503, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16241815

RESUMEN

Diamond-anvil cell experiments augmented by first-principles calculations have found a remarkable stability of the N(3-) ion in Li3N to a sixfold volume reduction. A new (gamma) phase is discovered above 40(+/-5) GPa, with an 8% volume collapse and a band gap quadrupling at the transition determined by synchrotron x-ray diffraction and inelastic x-ray scattering. gamma-Li(3)N (Fm3m, Li(3)Bi-like structure) remains stable up to 200 GPa, and calculations do not predict metallization until approximately 8 TPa. The high structural stability, wide band gap, and simple electronic structure make this N(3-) based system analogous to lower valency compounds (MgO, NaCl, Ne), meriting its use as an internal pressure standard.

16.
Phys Rev Lett ; 94(11): 115502, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15903870

RESUMEN

We present evidence for an isostructural, first-order Mott transition in MnO at 105+/-5 GPa, based on high-resolution x-ray emission spectroscopy and angle-resolved x-ray diffraction data. The pressure-induced structural and spectral changes provide a coherent picture of MnO phase transitions from paramagnetic B1 to antiferromagnetic distorted B1 at 30 GPa, to paramagnetic B8 at 90 GPa, and to diamagnetic B8 at 105+/-5 GPa. The last is the Mott transition, accompanied by a significant loss of magnetic moment, an approximately 6.6% volume collapse and the insulator-metal transition as demonstrated by recent resistance measurements.

17.
Phys Rev Lett ; 94(2): 026403, 2005 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-15698202

RESUMEN

Charge disproportionation (CD) and spin differentiation in Na(1/2)CoO2 are studied using the correlated band local-density approximation + Hubbard U (LDA+U) approach. The simultaneous CD and gap opening seen previously is followed in detail through a first-order charge disproportionation transition 2Co(3.5+)-->Co3++Co4+. Disproportionation in the Co a(g) orbital results in half of the ions (Co3+) becoming electronically and magnetically dead, transforming the quarter-filled a(g) system into a half-filled subsystem that subsequently undergoes the observed charge ordering or metal-insulator transition. Comparing with data in the x approximately 0.3 regime suggests the system has moved into the multiband regime where the effective Coulomb repulsion U-->U(eff)=U/sqrt[3] strongly lessens correlation effects.

18.
Phys Rev Lett ; 93(23): 237003, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15601190

RESUMEN

Superconductivity of boron-doped diamond, reported recently at T(c)=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond-stretch mode is 60% larger than the corresponding quantity in MgB2 that drives its high T(c), leading to very large electron-phonon matrix elements. The calculated coupling strength lambda approximately 0.5 leads to T(c) in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T(c) somewhat, but the effects of three dimensionality primarily on the density of states keep doped diamond from having a T(c) closer to that of MgB2.

19.
Phys Rev Lett ; 93(14): 147006, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15524834

RESUMEN

We report a systematic increase of the superconducting transition temperature T(c) with a biaxial tensile strain in MgB2 films to well beyond the bulk value. The tensile strain increases with the MgB2 film thickness, caused primarily by the coalescence of initially nucleated discrete islands (the Volmer-Weber growth mode.) The T(c) increase was observed in epitaxial films on SiC and sapphire substrates, although the T(c) values were different for the two substrates due to different lattice parameters and thermal expansion coefficients. We identified, by first-principles calculations, the underlying mechanism for the T(c) increase to be the softening of the bond-stretching E(2g) phonon mode, and we confirmed this conclusion by Raman scattering measurements. The result suggests that the E(2g) phonon softening is a possible avenue to achieve even higher T(c) in MgB2-related material systems.

20.
Phys Rev Lett ; 89(16): 167204, 2002 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-12398752

RESUMEN

Microscopic mechanisms of the puzzling insulating ferromagnetism of half-filled La4Ba2Cu2O10 are elucidated with energy-resolved Wannier states. The dominant magnetic coupling, revealed through evaluated parameters (t, U, and J), turns out to be the intersite direct exchange, a currently ignored mechanism that overwhelms the antiferromagnetic superexchange. By contrast, the isostructural Nd4Ba2Cu2O10 develops the observed antiferromagnetic order via its characteristics of a 1D chain. Surprisingly, the in-plane order of both cases is not controlled by coupling between nearest neighbors. An intriguing pressure-induced ferromagnetic to antiferromagnetic transition is predicted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...