Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Bioinform Adv ; 4(1): vbae099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39143982

RESUMEN

Summary: Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation: Not applicable.

2.
Nature ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198643

RESUMEN

Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1-4. Despite the clinical evidence1,5-7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8-10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.

3.
Eur Heart J ; 45(30): 2752-2767, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38757788

RESUMEN

BACKGROUND AND AIMS: Incident heart failure (HF) among individuals with chronic kidney disease (CKD) incurs hospitalizations that burden patients and health care systems. There are few preventative therapies, and the Pooled Cohort equations to Prevent Heart Failure (PCP-HF) perform poorly in the setting of CKD. New drug targets and better risk stratification are urgently needed. METHODS: In this analysis of incident HF, SomaScan V4.0 (4638 proteins) was analysed in 2906 participants of the Chronic Renal Insufficiency Cohort (CRIC) with validation in the Atherosclerosis Risk in Communities (ARIC) study. The primary outcome was 14-year incident HF (390 events); secondary outcomes included 4-year HF (183 events), HF with reduced ejection fraction (137 events), and HF with preserved ejection fraction (165 events). Mendelian randomization and Gene Ontology were applied to examine causality and pathways. The performance of novel multi-protein risk models was compared to the PCP-HF risk score. RESULTS: Over 200 proteins were associated with incident HF after adjustment for estimated glomerular filtration rate at P < 1 × 10-5. After adjustment for covariates including N-terminal pro-B-type natriuretic peptide, 17 proteins remained associated at P < 1 × 10-5. Mendelian randomization associations were found for six proteins, of which four are druggable targets: FCG2B, IGFBP3, CAH6, and ASGR1. For the primary outcome, the C-statistic (95% confidence interval [CI]) for the 48-protein model in CRIC was 0.790 (0.735, 0.844) vs. 0.703 (0.644, 0.762) for the PCP-HF model (P = .001). C-statistic (95% CI) for the protein model in ARIC was 0.747 (0.707, 0.787). CONCLUSIONS: Large-scale proteomics reveal novel circulating protein biomarkers and potential mediators of HF in CKD. Proteomic risk models improve upon the PCP-HF risk score in this population.


Asunto(s)
Insuficiencia Cardíaca , Proteómica , Insuficiencia Renal Crónica , Humanos , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/metabolismo , Masculino , Femenino , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Persona de Mediana Edad , Medición de Riesgo/métodos , Incidencia , Anciano , Biomarcadores/metabolismo , Biomarcadores/sangre , Tasa de Filtración Glomerular/fisiología , Análisis de la Aleatorización Mendeliana
4.
Nucleic Acids Res ; 52(W1): W481-W488, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38783119

RESUMEN

In recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities. To tackle these challenges, we introduce Drugst.One, a platform that assists specialized computational medicine tools in becoming user-friendly, web-based utilities for drug repurposing. With just three lines of code, Drugst.One turns any systems biology software into an interactive web tool for modeling and analyzing complex protein-drug-disease networks. Demonstrating its broad adaptability, Drugst.One has been successfully integrated with 21 computational systems medicine tools. Available at https://drugst.one, Drugst.One has significant potential for streamlining the drug discovery process, allowing researchers to focus on essential aspects of pharmaceutical treatment research.


Asunto(s)
Reposicionamiento de Medicamentos , Programas Informáticos , Reposicionamiento de Medicamentos/métodos , Humanos , Internet , Descubrimiento de Drogas/métodos , Biología de Sistemas/métodos , Biología Computacional/métodos
5.
Nucleic Acids Res ; 52(W1): W415-W421, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38808672

RESUMEN

Enrichment analysis, crucial for interpreting genomic, transcriptomic, and proteomic data, is expanding into metabolomics. Furthermore, there is a rising demand for integrated enrichment analysis that combines data from different studies and omics platforms, as seen in meta-analysis and multi-omics research. To address these growing needs, we have updated WebGestalt to include enrichment analysis capabilities for both metabolites and multiple input lists of analytes. We have also significantly increased analysis speed, revamped the user interface, and introduced new pathway visualizations to accommodate these updates. Notably, the adoption of a Rust backend reduced gene set enrichment analysis time by 95% from 270.64 to 12.41 s and network topology-based analysis by 89% from 159.59 to 17.31 s in our evaluation. This performance improvement is also accessible in both the R package and a newly introduced Python package. Additionally, we have updated the data in the WebGestalt database to reflect the current status of each source and have expanded our collection of pathways, networks, and gene signatures. The 2024 WebGestalt update represents a significant leap forward, offering new support for metabolomics, streamlined multi-omics analysis capabilities, and remarkable performance enhancements. Discover these updates and more at https://www.webgestalt.org.


Asunto(s)
Metabolómica , Programas Informáticos , Metabolómica/métodos , Genómica/métodos , Humanos , Proteómica/métodos , Interfaz Usuario-Computador , Internet , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Multiómica
6.
Nucleic Acids Res ; 52(D1): D679-D689, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37941138

RESUMEN

WikiPathways (wikipathways.org) is an open-source biological pathway database. Collaboration and open science are pivotal to the success of WikiPathways. Here we highlight the continuing efforts supporting WikiPathways, content growth and collaboration among pathway researchers. As an evolving database, there is a growing need for WikiPathways to address and overcome technical challenges. In this direction, WikiPathways has undergone major restructuring, enabling a renewed approach for sharing and curating pathway knowledge, thus providing stability for the future of community pathway curation. The website has been redesigned to improve and enhance user experience. This next generation of WikiPathways continues to support existing features while improving maintainability of the database and facilitating community input by providing new functionality and leveraging automation.


Asunto(s)
Bases de Datos Factuales
7.
Sci Adv ; 9(49): eadj4884, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064566

RESUMEN

Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.


Asunto(s)
Hiperoxia , Oxígeno , Animales , Ratones , Encéfalo/metabolismo , Hiperoxia/genética , Hiperoxia/metabolismo , Hipoxia/metabolismo , Pulmón/metabolismo , Oxígeno/metabolismo
8.
BMC Genomics ; 24(1): 713, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007419

RESUMEN

Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontology while providing rich, mechanistic diagrams and direct literature support. Here, we highlight the utility of PFOCR in disease research in comparison with popular pathway databases through an assessment of disease coverage and analytical applications. In addition to common pathway analysis use cases, we present two advanced case studies demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.


Asunto(s)
Aprendizaje Automático , Neoplasias , Humanos , Ontología de Genes , Bases de Datos Factuales , Neoplasias/genética
9.
Bioinformatics ; 39(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37707514

RESUMEN

SUMMARY: Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThings Explorer is distributed as a lightweight application that dynamically retrieves information at query time. AVAILABILITY AND IMPLEMENTATION: More information can be found at https://explorer.biothings.io and code is available at https://github.com/biothings/biothings_explorer.


Asunto(s)
Algoritmos , Reconocimiento de Normas Patrones Automatizadas
10.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37461614

RESUMEN

Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontology while providing rich, mechanistic diagrams and direct literature support. PFOCR content is extracted from published pathway figures currently emerging at a rate of 1000 new pathways each month. Here, we compare the pathway information contained in PFOCR against popular pathway databases with respect to overall and disease-specific coverage. In addition to common pathways analysis use cases, we present two advanced case studies demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.

11.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291385

RESUMEN

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Ratones , Animales , Microglía/metabolismo , Multiómica , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/genética , Fibrinógeno
12.
ArXiv ; 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37332567

RESUMEN

In recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities. To tackle these challenges, we introduce Drugst.One, a platform that assists specialized computational medicine tools in becoming user-friendly, web-based utilities for drug repurposing. With just three lines of code, Drugst.One turns any systems biology software into an interactive web tool for modeling and analyzing complex protein-drug-disease networks. Demonstrating its broad adaptability, Drugst.One has been successfully integrated with 21 computational systems medicine tools. Available at https://drugst.one, Drugst.One has significant potential for streamlining the drug discovery process, allowing researchers to focus on essential aspects of pharmaceutical treatment research.

13.
ArXiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131885

RESUMEN

Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThing Explorer is distributed as a lightweight application that dynamically retrieves information at query time. More information can be found at https://explorer.biothings.io, and code is available at https://github.com/biothings/biothings_explorer.

14.
Bioinformatics ; 39(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36882166

RESUMEN

MOTIVATION: The investigation of sets of genes using biological pathways is a common task for researchers and is supported by a wide variety of software tools. This type of analysis generates hypotheses about the biological processes that are active or modulated in a specific experimental context. RESULTS: The Network Data Exchange Integrated Query (NDEx IQuery) is a new tool for network and pathway-based gene set interpretation that complements or extends existing resources. It combines novel sources of pathways, integration with Cytoscape, and the ability to store and share analysis results. The NDEx IQuery web application performs multiple gene set analyses based on diverse pathways and networks stored in NDEx. These include curated pathways from WikiPathways and SIGNOR, published pathway figures from the last 27 years, machine-assembled networks using the INDRA system, and the new NCI-PID v2.0, an updated version of the popular NCI Pathway Interaction Database. NDEx IQuery's integration with MSigDB and cBioPortal now provides pathway analysis in the context of these two resources. AVAILABILITY AND IMPLEMENTATION: NDEx IQuery is available at https://www.ndexbio.org/iquery and is implemented in Javascript and Java.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Mapas de Interacción de Proteínas , Publicaciones , Bases de Datos Factuales , Internet
15.
Bioinformatics ; 39(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36759942

RESUMEN

MOTIVATION: Knowledge graphs (KGs) are being adopted in industry, commerce and academia. Biomedical KG presents a challenge due to the complexity, size and heterogeneity of the underlying information. RESULTS: In this work, we present the Scalable Precision Medicine Open Knowledge Engine (SPOKE), a biomedical KG connecting millions of concepts via semantically meaningful relationships. SPOKE contains 27 million nodes of 21 different types and 53 million edges of 55 types downloaded from 41 databases. The graph is built on the framework of 11 ontologies that maintain its structure, enable mappings and facilitate navigation. SPOKE is built weekly by python scripts which download each resource, check for integrity and completeness, and then create a 'parent table' of nodes and edges. Graph queries are translated by a REST API and users can submit searches directly via an API or a graphical user interface. Conclusions/Significance: SPOKE enables the integration of seemingly disparate information to support precision medicine efforts. AVAILABILITY AND IMPLEMENTATION: The SPOKE neighborhood explorer is available at https://spoke.rbvi.ucsf.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Medicina de Precisión , Bases de Datos Factuales
16.
F1000Res ; 102021.
Artículo en Inglés | MEDLINE | ID: mdl-34912541

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) has revolutionized molecular biology and medicine by enabling high-throughput studies of cellular heterogeneity in diverse tissues. Applying network biology approaches to scRNA-seq data can provide useful insights into genes driving heterogeneous cell-type compositions of tissues. Here, we present scNetViz-  a Cytoscape app to aid biological interpretation of cell clusters in scRNA-seq data using network analysis. scNetViz calculates the differential expression of each gene across clusters and then creates a cluster-specific gene functional interaction network between the significantly differentially expressed genes for further analysis, such as pathway enrichment analysis. To automate a complete data analysis workflow, scNetViz integrates parts of the Scanpy software, which is a popular Python package for scRNA-seq data analysis, with Cytoscape apps such as stringApp, cyPlot, and enhancedGraphics. We describe our implementation of methods for accessing data from public single cell atlas projects, differential expression analysis, visualization, and automation. scNetViz enables users to analyze data from public atlases or their own experiments, which we illustrate with two use cases. Analysis can be performed via the Cytoscape GUI or CyREST programming interface using R (RCy3) or Python (py4cytoscape).


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Automatización , Análisis de Datos , Flujo de Trabajo
17.
bioRxiv ; 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34671772

RESUMEN

Blood clots are a central feature of coronavirus disease-2019 (COVID-19) and can culminate in pulmonary embolism, stroke, and sudden death. However, it is not known how abnormal blood clots form in COVID-19 or why they occur even in asymptomatic and convalescent patients. Here we report that the Spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the blood coagulation factor fibrinogen and induces structurally abnormal blood clots with heightened proinflammatory activity. SARS-CoV-2 Spike virions enhanced fibrin-mediated microglia activation and induced fibrinogen-dependent lung pathology. COVID-19 patients had fibrin autoantibodies that persisted long after acute infection. Monoclonal antibody 5B8, targeting the cryptic inflammatory fibrin epitope, inhibited thromboinflammation. Our results reveal a procoagulant role for the SARS-CoV-2 Spike and propose fibrin-targeting interventions as a treatment for thromboinflammation in COVID-19. ONE-SENTENCE SUMMARY: SARS-CoV-2 spike induces structurally abnormal blood clots and thromboinflammation neutralized by a fibrin-targeting antibody.

19.
Cancer Cell ; 39(3): 361-379.e16, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33417831

RESUMEN

We present a proteogenomic study of 108 human papilloma virus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs). Proteomic analysis systematically catalogs HNSCC-associated proteins and phosphosites, prioritizes copy number drivers, and highlights an oncogenic role for RNA processing genes. Proteomic investigation of mutual exclusivity between FAT1 truncating mutations and 11q13.3 amplifications reveals dysregulated actin dynamics as a common functional consequence. Phosphoproteomics characterizes two modes of EGFR activation, suggesting a new strategy to stratify HNSCCs based on EGFR ligand abundance for effective treatment with inhibitory EGFR monoclonal antibodies. Widespread deletion of immune modulatory genes accounts for low immune infiltration in immune-cold tumors, whereas concordant upregulation of multiple immune checkpoint proteins may underlie resistance to anti-programmed cell death protein 1 monotherapy in immune-hot tumors. Multi-omic analysis identifies three molecular subtypes with high potential for treatment with CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy, respectively. Altogether, proteogenomics provides a systematic framework to inform HNSCC biology and treatment.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Infecciones por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Adulto , Anciano , Anciano de 80 o más Años , Receptores ErbB/genética , Femenino , Humanos , Inmunoterapia/métodos , Masculino , Persona de Mediana Edad , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/virología , Proteogenómica/métodos , Proteómica/métodos , Adulto Joven
20.
F1000Res ; 10: 859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35399224

RESUMEN

Rapid technological advances in the past decades have enabled molecular biologists to generate large-scale and complex data with affordable resource investments, or obtain such data from public repositories. Yet, many graduate students, postdoctoral scholars, and senior researchers in the biosciences find themselves ill-equipped to analyze large-scale data. Global surveys have revealed that active researchers prefer short training workshops to fill their skill gaps. In this article, we focus on the challenge of delivering a short data analysis workshop to absolute beginners in computer programming. We propose that introducing R or other programming languages for data analysis as smart versions of calculators can help lower the communication barrier with absolute beginners. We describe this comparison with a few analogies and hope that other instructors will find them useful. We utilized these in our four-hour long training workshops involving participatory live coding, which we delivered in person and via videoconferencing. Anecdotal evidence suggests that our exposition made R programming seem easy and enabled beginners to explore it on their own.


Asunto(s)
Lenguajes de Programación , Estudiantes , Humanos , Investigadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA