Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurooncol Adv ; 5(1): vdad152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130902

RESUMEN

Background: Treatment resistance and tumor relapse are the primary causes of mortality in glioblastoma (GBM), with intratumoral heterogeneity playing a significant role. Patient-derived cancer organoids have emerged as a promising model capable of recapitulating tumor heterogeneity. Our objective was to develop patient-derived GBM organoids (PGO) to investigate treatment response and resistance. Methods: GBM samples were used to generate PGOs and analyzed using whole-exome sequencing (WES) and single-cell karyotype sequencing. PGOs were subjected to temozolomide (TMZ) to assess viability. Bulk RNA sequencing was performed before and after TMZ. Results: WES analysis on individual PGOs cultured for 3 time points (1-3 months) showed a high inter-organoid correlation and retention of genetic variants (range 92.3%-97.7%). Most variants were retained in the PGO compared to the tumor (range 58%-90%) and exhibited similar copy number variations. Single-cell karyotype sequencing demonstrated preservation of genetic heterogeneity. Single-cell multiplex immunofluorescence showed maintenance of cellular states. TMZ treatment of PGOs showed a differential response, which largely corresponded with MGMT promoter methylation. Differentially expressed genes before and after TMZ revealed an upregulation of the JNK kinase pathway. Notably, the combination treatment of a JNK kinase inhibitor and TMZ demonstrated a synergistic effect. Conclusions: Overall, these findings demonstrate the robustness of PGOs in retaining the genetic and phenotypic heterogeneity in culture and the application of measuring clinically relevant drug responses. These data show that PGOs have the potential to be further developed into avatars for personalized adaptive treatment selection and actionable drug target discovery and as a platform to study GBM biology.

2.
Acta Neuropathol Commun ; 4(1): 96, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27586084

RESUMEN

The infiltrative behavior of diffuse gliomas severely reduces therapeutic potential of surgical resection and radiotherapy, and urges for the identification of new drug-targets affecting glioma growth and migration. To address the potential role of protein tyrosine phosphatases (PTPs), we performed mRNA expression profiling for 91 of the 109 known human PTP genes on a series of clinical diffuse glioma samples of different grades and compared our findings with in silico knowledge from REMBRANDT and TCGA databases. Overall PTP family expression levels appeared independent of characteristic genetic aberrations associated with lower grade or high grade gliomas. Notably, seven PTP genes (DUSP26, MTMR4, PTEN, PTPRM, PTPRN2, PTPRT and PTPRZ1) were differentially expressed between grade II-III gliomas and (grade IV) glioblastomas. For DUSP26, PTEN, PTPRM and PTPRT, lower expression levels correlated with poor prognosis, and overexpression of DUSP26 or PTPRT in E98 glioblastoma cells reduced tumorigenicity. Our study represents the first in-depth analysis of PTP family expression in diffuse glioma subtypes and warrants further investigations into PTP-dependent signaling events as new entry points for improved therapy.


Asunto(s)
Neoplasias Encefálicas/enzimología , Glioma/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Neoplasias Encefálicas/patología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Movimiento Celular/fisiología , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Células HEK293 , Humanos , Inmunohistoquímica , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Estimación de Kaplan-Meier , Clasificación del Tumor , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Proteínas Tirosina Fosfatasas/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...