Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuromuscul Disord ; 36: 1-5, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301403

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by the absence of functional dystrophin. There are multiple ongoing clinical trials for DMD that are testing gene therapy treatments consisting of adeno-associated viral (AAV) vectors carrying miniaturized versions of dystrophin optimized for function, termed micro-dystrophins (µDys). Utrophin, the fetal homolog of dystrophin, has repeatedly been reported to be upregulated in human DMD muscle as a compensatory mechanism, but whether µDys displaces full-length utrophin is unknown. In this study, dystrophin/utrophin-deficient mice with transgenic overexpression of full-length utrophin in skeletal muscles were systemically administered low doses of either AAV6-CK8e-Hinge3-µDys (µDysH3) or AAV6-CK8e-µDys5 (µDys5). We used immunofluorescence to qualitatively assess the localization of µDys with transgenic utrophin and neuronal nitric oxide synthase (nNOS) in quadriceps muscles. µDys protein resulting from both gene therapies co-localized at myofiber membranes with transgenic utrophin. We also confirmed the sarcolemmal co-localization of nNOS with µDys5, but not with transgenic utrophin expression or µDysH3. Transgenic utrophin expression and µDys proteins produced from both therapies stabilize the dystrophin-glycoprotein complex as observed by sarcolemmal localization of ß-dystroglycan. This study suggests that µDys gene therapy will likely not inhibit any endogenous compensation by utrophin in DMD muscle.


Asunto(s)
Distrofina , Fibras Musculares Esqueléticas , Animales , Humanos , Ratones , Distrofina/genética , Utrofina/genética , Músculo Esquelético , Terapia Genética
2.
Mol Ther Methods Clin Dev ; 28: 344-354, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36874243

RESUMEN

Micro-dystrophin gene replacement therapies for Duchenne muscular dystrophy (DMD) are currently in clinical trials, but have not been thoroughly investigated for their efficacy on cardiomyopathy progression to heart failure. We previously validated Fiona/dystrophin-utrophin-deficient (dko) mice as a DMD cardiomyopathy model that progresses to reduced ejection fraction indicative of heart failure. Adeno-associated viral (AAV) vector delivery of an early generation micro-dystrophin prevented cardiac pathology and functional decline through 1 year of age in this new model. We now show that gene therapy using a micro-dystrophin optimized for skeletal muscle efficacy (AAV-µDys5), and which is currently in a clinical trial, is able to fully prevent cardiac pathology and cardiac strain abnormalities and maintain normal (>45%) ejection fraction through 18 months of age in Fiona/dko mice. Early treatment with AAV-µDys5 prevents inflammation and fibrosis in Fiona/dko hearts. Collagen in cardiac fibrotic scars becomes more tightly packed from 12 to 18 months in Fiona/dko mice, but the area of fibrosis containing tenascin C does not change. Increased tight collagen correlates with unexpected improvements in Fiona/dko whole-heart function that maintain impaired cardiac strain and strain rate. This study supports micro-dystrophin gene therapy as a promising intervention for preventing DMD cardiomyopathy progression.

3.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36040807

RESUMEN

Mineralocorticoid receptor antagonists (MRAs) slow cardiomyopathy in patients with Duchenne muscular dystrophy (DMD) and improve skeletal muscle pathology and function in dystrophic mice. However, glucocorticoids, known antiinflammatory drugs, remain a standard of care for DMD, despite substantial side effects. Exact mechanisms underlying mineralocorticoid receptor (MR) signaling contribution to dystrophy are unknown. Whether MRAs affect inflammation in dystrophic muscles and how they compare with glucocorticoids is unclear. The MRA spironolactone and glucocorticoid prednisolone were each administered for 1 week to dystrophic mdx mice during peak skeletal muscle necrosis to compare effects on inflammation. Both drugs reduced cytokine levels in mdx quadriceps, but prednisolone elevated diaphragm cytokines. Spironolactone did not alter myeloid populations in mdx quadriceps or diaphragms, but prednisolone increased F4/80hi macrophages. Both spironolactone and prednisolone reduced inflammatory gene expression in myeloid cells sorted from mdx quadriceps, while prednisolone additionally perturbed cell cycle genes. Spironolactone also repressed myeloid expression of the gene encoding fibronectin, while prednisolone increased its expression. Overall, spironolactone exhibits antiinflammatory properties without altering leukocyte distribution within skeletal muscles, while prednisolone suppresses quadriceps cytokines but increases diaphragm cytokines and pathology. Antiinflammatory properties of MRAs and different limb and respiratory muscle responses to glucocorticoids should be considered when optimizing treatments for patients with DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Miositis , Animales , Citocinas/metabolismo , Fibronectinas/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Inflamación/metabolismo , Ratones , Ratones Endogámicos mdx , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Prednisolona/metabolismo , Prednisolona/farmacología , Prednisolona/uso terapéutico , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapéutico , Espironolactona/metabolismo , Espironolactona/farmacología , Espironolactona/uso terapéutico
4.
Front Pharmacol ; 13: 942660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837290

RESUMEN

Duchenne muscular dystrophy (DMD) is a striated muscle degenerative disease due to loss of functional dystrophin protein. Loss of dystrophin results in susceptibility of muscle membranes to damage, leading to muscle degeneration and continuous inflammation and fibrosis that further exacerbate pathology. Long-term glucocorticoid receptor (GR) agonist treatment, the current standard-of-care for DMD, modestly improves prognosis but has serious side effects. The mineralocorticoid receptor (MR), a ligand-activated transcription factor present in many cell types, has been implicated as a therapeutic target for DMD. MR antagonists (MRAs) have fewer side effects than GR agonists and are used clinically for heart failure. MRA efficacy has recently been demonstrated for DMD cardiomyopathy and in preclinical studies, MRAs also alleviate dystrophic skeletal muscle pathology. MRAs lead to improvements in muscle force and membrane stability and reductions in degeneration, inflammation, and fibrosis in dystrophic muscles. Myofiber-specific MR knockout leads to most of these improvements, supporting an MR-dependent mechanism of action, but MRAs additionally stabilize myofiber membranes in an MR-independent manner. Immune cell MR signaling in dystrophic and acutely injured normal muscle contributes to wound healing, and myeloid-specific MR knockout is detrimental. More research is needed to fully elucidate MR signaling in striated muscle microenvironments. Direct comparisons of genomic and non-genomic effects of glucocorticoids and MRAs on skeletal muscles and heart will contribute to optimal temporal use of these drugs, since they compete for binding conserved receptors. Despite the advent of genetic medicines, therapies targeting inflammation and fibrosis will be necessary to achieve optimal patient outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...