Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 2): 43-51, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305785

RESUMEN

The methylerythritol phosphate (MEP) pathway is a metabolic pathway that produces the isoprenoids isopentyl pyrophosphate and dimethylallyl pyrophosphate. Notably, the MEP pathway is present in bacteria and not in mammals, which makes the enzymes of the MEP pathway attractive targets for discovering new anti-infective agents due to the reduced chances of off-target interactions leading to side effects. There are seven enzymes in the MEP pathway, the third of which is IspD. Two crystal structures of Burkholderia thailandensis IspD (BtIspD) were determined: an apo structure and that of a complex with cytidine triphosphate (CTP). Comparison of the CTP-bound BtIspD structure with the apo structure revealed that CTP binding stabilizes the loop composed of residues 13-19. The apo structure of Mycobacterium paratuberculosis IspD (MpIspD) is also reported. The melting temperatures of MpIspD and BtIspD were evaluated by circular dichroism. The moderate Tm values suggest that a thermal shift assay may be feasible for future inhibitor screening. Finally, the binding affinity of CTP for BtIspD was evaluated by isothermal titration calorimetry. These structural and biophysical data will aid in the discovery of IspD inhibitors.


Asunto(s)
Burkholderia , Mycobacterium avium subsp. paratuberculosis , Difosfatos , Cristalografía por Rayos X
2.
mBio ; 13(3): e0104922, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35604094

RESUMEN

Calcineurin is an essential virulence factor that is conserved across human fungal pathogens, including Cryptococcus neoformans, Aspergillus fumigatus, and Candida albicans. Although an excellent target for antifungal drug development, the serine-threonine phosphatase activity of calcineurin is conserved in mammals, and inhibition of this activity results in immunosuppression. FK506 (tacrolimus) is a naturally produced macrocyclic compound that inhibits calcineurin by binding to the immunophilin FKBP12. Previously, our fungal calcineurin-FK506-FKBP12 structure-based approaches identified a nonconserved region of FKBP12 that can be exploited for fungus-specific targeting. These studies led to the design of an FK506 analog, APX879, modified at the C-22 position, which was less immunosuppressive yet maintained antifungal activity. We now report high-resolution protein crystal structures of fungal FKBP12 and a human truncated calcineurin-FKBP12 bound to a natural FK506 analog, FK520 (ascomycin). Based on information from these structures and the success of APX879, we synthesized and screened a novel panel of C-22-modified compounds derived from both FK506 and FK520. One compound, JH-FK-05, demonstrates broad-spectrum antifungal activity in vitro and is nonimmunosuppressive in vivo. In murine models of pulmonary and disseminated C. neoformans infection, JH-FK-05 treatment significantly reduced fungal burden and extended animal survival alone and in combination with fluconazole. Furthermore, molecular dynamic simulations performed with JH-FK-05 binding to fungal and human FKBP12 identified additional residues outside the C-22 and C-21 positions that could be modified to generate novel FK506 analogs with improved antifungal activity. IMPORTANCE Due to rising rates of antifungal drug resistance and a limited armamentarium of antifungal treatments, there is a paramount need for novel antifungal drugs to treat systemic fungal infections. Calcineurin has been established as an essential and conserved virulence factor in several fungi, making it an attractive antifungal target. However, due to the immunosuppressive action of calcineurin inhibitors, they have not been successfully utilized clinically for antifungal treatment in humans. Recent availability of crystal structures of fungal calcineurin-bound inhibitor complexes has enabled the structure-guided design of FK506 analogs and led to a breakthrough in the development of a compound with increased fungal specificity. The development of a calcineurin inhibitor with reduced immunosuppressive activity and maintained therapeutic antifungal activity would add a significant tool to the treatment options for these invasive fungal infections with exceedingly high rates of mortality.


Asunto(s)
Cryptococcus neoformans , Tacrolimus , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Calcineurina/metabolismo , Inhibidores de la Calcineurina/farmacología , Cryptococcus neoformans/metabolismo , Imidazoles , Inmunosupresores/metabolismo , Inmunosupresores/farmacología , Mamíferos/metabolismo , Ratones , Sulfonamidas , Tacrolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Tiofenos , Factores de Virulencia/metabolismo
3.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35245364

RESUMEN

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Leishmania major , Isomerasa de Peptidilprolil , Proteínas Protozoarias , Proteínas Bacterianas/antagonistas & inhibidores , Bacterias Gramnegativas/efectos de los fármacos , Leishmania major/efectos de los fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Recombinantes
4.
BMC Mol Cell Biol ; 21(1): 8, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111164

RESUMEN

BACKGROUND: TgDCX is a doublecortin-domain protein associated with the conoid fibers, a set of strongly curved non-tubular tubulin-polymers in Toxoplasma. TgDCX deletion impairs conoid structure and parasite invasion. TgDCX contains two tubulin-binding domains: a partial P25α and the DCX/doublecortin domain. Orthologues are found in apicomplexans and their free-living relatives Chromera and Vitrella. RESULTS: We report that isolated TgDCX-containing conoid fibers retain their pronounced curvature, but loss of TgDCX destabilizes the fibers. We crystallized and determined the 3D-structure of the DCX-domain, which is similar to those of human doublecortin and well-conserved among TgDCX orthologues. However, the orthologues vary widely in targeting to the conoid in Toxoplasma and in modulating microtubule organization in Xenopus cells. Several orthologues bind to microtubules in Xenopus cells, but only TgDCX generates short, strongly curved microtubule arcs. EM analysis shows microtubules decorated with TgDCX bundled into rafts, often bordered on one edge by a "C"-shaped incomplete tube. A Chromera orthologue closely mimics TgDCX targeting in Toxoplasma and binds to microtubules in Xenopus cells, but does not generate arcs or "C"-shaped tubes, and fails to rescue the defects of the TgDCX-knockout parasite. CONCLUSIONS: These observations suggest that species-specific features of TgDCX enable it to generate strongly curved tubulin-polymers to support efficient host-cell invasion.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Neuropéptidos/química , Toxoplasma/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos/genética , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Neuropéptidos/genética , Neuropéptidos/metabolismo , Polímeros/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos/genética , Proteínas Recombinantes , Toxoplasma/química , Toxoplasma/efectos de los fármacos , Toxoplasma/ultraestructura , Tubulina (Proteína)/química , Xenopus
5.
Sci Rep ; 7: 41074, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28120876

RESUMEN

During human infection, Mycobacterium tuberculosis (Mtb) survives the normally bacteriocidal phagosome of macrophages. Mtb and related species may be able to combat this harsh acidic environment which contains reactive oxygen species due to the mycobacterial genomes encoding a large number of dehydrogenases. Typically, dehydrogenase cofactor binding sites are open to solvent, which allows NAD/NADH exchange to support multiple turnover. Interestingly, mycobacterial short chain dehydrogenases/reductases (SDRs) within family TIGR03971 contain an insertion at the NAD binding site. Here we present crystal structures of 9 mycobacterial SDRs in which the insertion buries the NAD cofactor except for a small portion of the nicotinamide ring. Line broadening and STD-NMR experiments did not show NAD or NADH exchange on the NMR timescale. STD-NMR demonstrated binding of the potential substrate carveol, the potential product carvone, the inhibitor tricyclazol, and an external redox partner 2,6-dichloroindophenol (DCIP). Therefore, these SDRs appear to contain a non-exchangeable NAD cofactor and may rely on an external redox partner, rather than cofactor exchange, for multiple turnover. Incidentally, these genes always appear in conjunction with the mftA gene, which encodes the short peptide MftA, and with other genes proposed to convert MftA into the external redox partner mycofactocin.


Asunto(s)
Coenzimas/química , Coenzimas/metabolismo , Mycobacterium tuberculosis/enzimología , NAD/química , NAD/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , 2,6-Dicloroindofenol/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Monoterpenos Ciclohexánicos , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Monoterpenos/metabolismo , Mutagénesis Insercional , Oxidorreductasas/genética , Unión Proteica , Conformación Proteica , Tiazoles/metabolismo
6.
Bioorg Med Chem Lett ; 25(24): 5699-704, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26584881

RESUMEN

The fragment FOL7185 (compound 17) was found to be a hit against IspD and IspE enzymes isolated from bacteria, and a series of analogs containing the pyrazolopyrimidine core were synthesized. The majority of these compounds inhibited the growth of Burkholderia thailandensis (Bt) and Pseudomonas aeruginosa (Pa) in the Kirby­Bauer disk diffusion susceptibility test. Compound 29 shows inhibitory activity at 0.1 mM (32.2 lg/mL), which is comparable to the control compound kanamycin (48.5 lg/mL). Compound 29 also shows inhibitory activity at 0.5 mM against kanamycin resistant P. aeruginosa. Saturation transfer difference NMR (STD-NMR) screening of these compounds against BtIspD and BtIspE indicated that most of these compounds significantly interact with BtIspE, suggesting that the compounds may inhibit the growth of Bt by disrupting isoprenoid biosynthesis. Ligand epitope mapping of compound 29 with BtIspE indicated that hydrogens on 2,4-dichlorophenyl group have higher proximity to the surface of the enzyme than hydrogens on the pyrazolopyrimidine ring.


Asunto(s)
Antibacterianos/síntesis química , Pirazoles/química , Piridinas/química , Antibacterianos/química , Antibacterianos/farmacología , Burkholderia/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pirazoles/síntesis química , Pirazoles/farmacología , Piridinas/síntesis química , Piridinas/farmacología , Relación Estructura-Actividad
7.
Antimicrob Agents Chemother ; 58(3): 1458-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24366729

RESUMEN

Macrophage infectivity potentiators (Mips) are immunophilin proteins and essential virulence factors for a range of pathogenic organisms. We applied a structural biology approach to characterize a Mip from Burkholderia pseudomallei (BpML1), the causative agent of melioidosis. Crystal structure and nuclear magnetic resonance analyses of BpML1 in complex with known macrocyclics and other derivatives led to the identification of a key chemical scaffold. This scaffold possesses inhibitory potency for BpML1 without the immunosuppressive components of related macrocyclic agents. Biophysical characterization of a compound series with this scaffold allowed binding site specificity in solution and potency determinations for rank ordering the set. The best compounds in this series possessed a low-micromolar affinity for BpML1, bound at the site of enzymatic activity, and inhibited a panel of homologous Mip proteins from other pathogenic bacteria, without demonstrating toxicity in human macrophages. Importantly, the in vitro activity of BpML1 was reduced by these compounds, leading to decreased macrophage infectivity and intracellular growth of Burkholderia pseudomallei. These compounds offer the potential for activity against a new class of antimicrobial targets and present the utility of a structure-based approach for novel antimicrobial drug discovery.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas Bacterianas/efectos de los fármacos , Burkholderia pseudomallei/efectos de los fármacos , Descubrimiento de Drogas/métodos , Inmunofilinas/efectos de los fármacos , Antiinfecciosos/uso terapéutico , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Cristalografía por Rayos X , Inmunofilinas/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Factores de Virulencia
8.
Curr Protoc Chem Biol ; 5(4): 251-268, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24391096

RESUMEN

Fragment screening by saturation transfer difference nuclear magnetic resonance (STD-NMR) is a robust method for identifying small molecule binders and is well suited to a broad set of biological targets. STD-NMR is exquisitely sensitive for detecting weakly binding compounds (a common characteristic of fragments), which is a crucial step in finding promising compounds for a fragment-based drug discovery campaign. This protocol describes the development of a library suitable for STD-NMR fragment screening, as well as preparation of protein samples, optimization of experimental conditions, and procedures for data collection and analysis.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Fragmentos de Péptidos/análisis , Diseño de Fármacos , Biblioteca de Péptidos , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA