Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Biol Chem ; 291(13): 6732-47, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26814128

RESUMEN

The genome of the extremely thermophilic bacterium Caldicellulosiruptor kronotskyensisencodes 19 surface layer (S-layer) homology (SLH) domain-containing proteins, the most in any Caldicellulosiruptorspecies genome sequenced to date. These SLH proteins include five glycoside hydrolases (GHs) and one polysaccharide lyase, the genes for which were transcribed at high levels during growth on plant biomass. The largest GH identified so far in this genus, Calkro_0111 (2,435 amino acids), is completely unique toC. kronotskyensisand contains SLH domains. Calkro_0111 was produced recombinantly inEscherichia colias two pieces, containing the GH16 and GH55 domains, respectively, as well as putative binding and spacer domains. These displayed endo- and exoglucanase activity on the ß-1,3-1,6-glucan laminarin. A series of additional truncation mutants of Calkro_0111 revealed the essential architectural features required for catalytic function. Calkro_0402, another of the SLH domain GHs inC. kronotskyensis, when produced inE. coli, was active on a variety of xylans and ß-glucans. Unlike Calkro_0111, Calkro_0402 is highly conserved in the genus Caldicellulosiruptorand among other biomass-degrading Firmicutes but missing from Caldicellulosiruptor bescii As such, the gene encoding Calkro_0402 was inserted into the C. besciigenome, creating a mutant strain with its S-layer extensively decorated with Calkro_0402. This strain consequently degraded xylans more extensively than wild-typeC. bescii The results here provide new insights into the architecture and role of SLH domain GHs and demonstrate that hemicellulose degradation can be enhanced through non-native SLH domain GHs engineered into the genomes of Caldicellulosiruptorspecies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridiales/enzimología , Genoma Bacteriano , Glicósido Hidrolasas/metabolismo , Madera/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Clostridiales/química , Clostridiales/clasificación , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glucanos/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Cinética , Mutación , Filogenia , Polisacáridos/metabolismo , Unión Proteica , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Xilanos/metabolismo
4.
ASAIO J ; 58(1): 65-72, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22157073

RESUMEN

The Penn State Infant Ventricular Assist Device (VAD) is a 12-14 ml stroke volume pneumatically actuated pump, with custom Björk-Shiley monostrut valves, developed under the National Heart, Lung, and Blood Institute Pediatric Circulatory Support program. In this report, we describe the seven most recent chronic animal studies of the Infant VAD in the juvenile ovine model, with a mean body weight of 23.5 ± 4.1 kg. The goal of 4-6 weeks survival was achieved in five of seven studies, with support duration ranging from 5 to 41 days; mean 26.1 days. Anticoagulation was accomplished using unfractionated heparin, and study animals were divided into two protocol groups: the first based on a target activated partial thromboplastin time of 1.5-2 times normal, and a second group using a target thromboelastography R-time of two times normal. The second group required significantly less heparin, which was verified by barely detectable heparin activity (anti-Xa). In both groups, there was no evidence of thromboembolism except in one animal with a chronic infection and fever. Device thrombi were minimal and were further reduced by introduction of the custom valve. These results are consistent with results of adult VAD testing in animals and are encouraging given the extremely low levels of anticoagulation in the second group.


Asunto(s)
Cardiología/instrumentación , Corazón Auxiliar , Animales , Anticoagulantes/uso terapéutico , Enfermedad Crónica , Fiebre , Implantación de Prótesis de Válvulas Cardíacas , Heparina/uso terapéutico , Ensayo de Materiales , Modelos Animales , Tiempo de Tromboplastina Parcial , Diseño de Prótesis , Ovinos , Resultado del Tratamiento
8.
ASAIO J ; 51(3): 214-23, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15968950

RESUMEN

In vitro durability testing was conducted on the Penn State/3M electric total artificial heart (ETAH) to determine device durability and to evaluate device failures. A specialized mock circulatory loop was developed for this testing. Customized software continuously acquired data during the test period, and failures were analyzed using FMEA (failure modes and effects analysis) and FMECA (failure modes, effects, and criticality analysis) principles. Redesigns were implemented when appropriate. Reliability growth principles were then applied to calculate the 1 and 2 year reliability. The 1 and 2 year reliability of the Penn State/3M ETAH was shown to be 96.1% and 59.9%, respectively, at 80% confidence.


Asunto(s)
Corazón Artificial , Electrónica , Corazón Artificial/efectos adversos , Humanos
9.
ASAIO J ; 51(1): 56-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15745135

RESUMEN

Unreliable quantification of flow pulsatility has hampered many efforts to assess the importance of pulsatile perfusion. Generation of pulsatile flow depends upon an energy gradient. It is necessary to quantify pressure flow waveforms in terms of hemodynamic energy levels to make a valid comparison between perfusion modes during chronic support. The objective of this study was to quantify pressure flow waveforms in terms of energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE) levels in an adult mock loop using a pulsatile ventricle assist system (VAD). A 70 cc Pierce-Donachy pneumatic pulsatile VAD was used with a Penn State adult mock loop. The pump flow rate was kept constant at 5 L/min with pump rates of 70 and 80 bpm and mean aortic pressures (MAP) of 80, 90, and 100 mm Hg, respectively. Pump flows were adjusted by varying the systolic pressure, systolic duration, and the diastolic vacuum of the pneumatic drive unit. The aortic pressure was adjusted by varying the systemic resistance of the mock loop EEP (mm Hg) = (integral of fpdf)/(integral of fdt) SHE (ergs/cm3) = 1,332 [((integral of fpdt)/(integral of fdt))--MAP] were calculated at each experimental stage. The difference between the EEP and the MAP is the extra energy generated by this device. This difference is approximately 10% in a normal human heart. The EEP levels were 88.3 +/- 0.9 mm Hg, 98.1 +/- 1.3 mm Hg, and 107.4 +/- 1.0 mm Hg with a pump rate of 70 bpm and an aortic pressure of 80 mm Hg, 90 mm Hg, and 100 mm Hg, respectively. Surplus hemodynamic energy in terms of ergs/cm3 was 11,039 +/- 1,236 ergs/cm3, 10,839 +/- 1,659 ergs/cm3, and 9,857 +/- 1,289 ergs/cm3, respectively. The percentage change from the mean aortic pressure to EEP was 10.4 +/- 1.2%, 9.0 +/- 1.4%, and 7.4 +/- 1.0% at the same experimental stages. Similar results were obtained when the pump rate was changed from 70 bpm to 80 bpm. The EEP and SHE formulas are adequate to quantify different levels of pulsatility for direct and meaningful comparisons. This particular pulsatile VAD system produces near physiologic hemodynamic energy levels at each experimental stage.


Asunto(s)
Presión Sanguínea/fisiología , Corazón Auxiliar , Flujo Pulsátil , Adulto , Aorta , Velocidad del Flujo Sanguíneo , Metabolismo Energético , Ventrículos Cardíacos , Hemodinámica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA